``` ├── .gitattributes ├── .github/ ├── ISSUE_TEMPLATE/ ├── config.yml ├── request_new_features.yaml ├── show_me_the_bug.yaml ├── PULL_REQUEST_TEMPLATE.md ├── dependabot.yml ├── workflows/ ├── build-package.yaml ├── environment-corrupt-check.yaml ├── pr-autodiff.yaml ├── pre-commit.yaml ├── stale.yaml ├── top-issues.yaml ├── .gitignore ├── .pre-commit-config.yaml ├── .vscode/ ├── extensions.json ├── settings.json ├── CODE_OF_CONDUCT.md ├── Dockerfile ├── LICENSE ├── README.md ├── README_ja.md ├── README_ko.md ├── README_zh.md ├── app/ ├── __init__.py ├── agent/ ├── __init__.py ├── base.py ├── browser.py ├── data_analysis.py ├── manus.py ├── mcp.py ├── react.py ├── swe.py ├── toolcall.py ├── bedrock.py ├── config.py ├── exceptions.py ├── flow/ ├── __init__.py ├── base.py ├── flow_factory.py ├── planning.py ├── llm.py ├── logger.py ├── mcp/ ├── __init__.py ├── server.py ├── prompt/ ├── __init__.py ├── browser.py ├── manus.py ├── mcp.py ├── planning.py ├── swe.py ├── toolcall.py ├── visualization.py ├── sandbox/ ├── __init__.py ├── client.py ├── core/ ├── exceptions.py ├── manager.py ├── sandbox.py ├── terminal.py ├── schema.py ├── tool/ ├── __init__.py ├── ask_human.py ├── base.py ├── bash.py ``` ## /.gitattributes ```gitattributes path="/.gitattributes" # HTML code is incorrectly calculated into statistics, so ignore them *.html linguist-detectable=false # Auto detect text files and perform LF normalization * text=auto eol=lf # Ensure shell scripts use LF (Linux style) line endings on Windows *.sh text eol=lf # Treat specific binary files as binary and prevent line ending conversion *.png binary *.jpg binary *.gif binary *.ico binary *.jpeg binary *.mp3 binary *.zip binary *.bin binary # Preserve original line endings for specific document files *.doc text eol=crlf *.docx text eol=crlf *.pdf binary # Ensure source code and script files use LF line endings *.py text eol=lf *.js text eol=lf *.html text eol=lf *.css text eol=lf # Specify custom diff driver for specific file types *.md diff=markdown *.json diff=json *.mp4 filter=lfs diff=lfs merge=lfs -text *.mov filter=lfs diff=lfs merge=lfs -text *.webm filter=lfs diff=lfs merge=lfs -text ``` ## /.github/ISSUE_TEMPLATE/config.yml ```yml path="/.github/ISSUE_TEMPLATE/config.yml" blank_issues_enabled: false contact_links: - name: "Join the Community Group" about: Join the OpenManus community to discuss and get help from others url: https://github.com/mannaandpoem/OpenManus?tab=readme-ov-file#community-group ``` ## /.github/ISSUE_TEMPLATE/request_new_features.yaml ```yaml path="/.github/ISSUE_TEMPLATE/request_new_features.yaml" name: "🤔 Request new features" description: Suggest ideas or features you’d like to see implemented in OpenManus. labels: enhancement body: - type: textarea id: feature-description attributes: label: Feature description description: | Provide a clear and concise description of the proposed feature validations: required: true - type: textarea id: your-feature attributes: label: Your Feature description: | Explain your idea or implementation process, if any. Optionally, include a Pull Request URL. Ensure accompanying docs/tests/examples are provided for review. validations: required: false ``` ## /.github/ISSUE_TEMPLATE/show_me_the_bug.yaml ```yaml path="/.github/ISSUE_TEMPLATE/show_me_the_bug.yaml" name: "🪲 Show me the Bug" description: Report a bug encountered while using OpenManus and seek assistance. labels: bug body: - type: textarea id: bug-description attributes: label: Bug Description description: | Clearly describe the bug you encountered validations: required: true - type: textarea id: solve-method attributes: label: Bug solved method description: | If resolved, explain the solution. Optionally, include a Pull Request URL. If unresolved, provide additional details to aid investigation validations: required: true - type: textarea id: environment-information attributes: label: Environment information description: | System: e.g., Ubuntu 22.04 Python: e.g., 3.12 OpenManus version: e.g., 0.1.0 value: | - System version: - Python version: - OpenManus version or branch: - Installation method (e.g., `pip install -r requirements.txt` or `pip install -e .`): validations: required: true - type: textarea id: extra-information attributes: label: Extra information description: | For example, attach screenshots or logs to help diagnose the issue validations: required: false ``` ## /.github/PULL_REQUEST_TEMPLATE.md **Features** - Feature 1 - Feature 2 **Feature Docs** **Influence** **Result** **Other** ## /.github/dependabot.yml ```yml path="/.github/dependabot.yml" version: 2 updates: - package-ecosystem: "pip" directory: "/" schedule: interval: "weekly" open-pull-requests-limit: 4 groups: # Group critical packages that might need careful review core-dependencies: patterns: - "pydantic*" - "openai" - "fastapi" - "tiktoken" browsergym-related: patterns: - "browsergym*" - "browser-use" - "playwright" search-tools: patterns: - "googlesearch-python" - "baidusearch" - "duckduckgo_search" pre-commit: patterns: - "pre-commit" security-all: applies-to: "security-updates" patterns: - "*" version-all: applies-to: "version-updates" patterns: - "*" exclude-patterns: - "pydantic*" - "openai" - "fastapi" - "tiktoken" - "browsergym*" - "browser-use" - "playwright" - "googlesearch-python" - "baidusearch" - "duckduckgo_search" - "pre-commit" - package-ecosystem: "github-actions" directory: "/" schedule: interval: "weekly" open-pull-requests-limit: 4 groups: actions: patterns: - "*" ``` ## /.github/workflows/build-package.yaml ```yaml path="/.github/workflows/build-package.yaml" name: Build and upload Python package on: workflow_dispatch: release: types: [created, published] jobs: deploy: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - name: Set up Python uses: actions/setup-python@v5 with: python-version: '3.12' cache: 'pip' - name: Install dependencies run: | python -m pip install --upgrade pip pip install -r requirements.txt pip install setuptools wheel twine - name: Set package version run: | export VERSION="${GITHUB_REF#refs/tags/v}" sed -i "s/version=.*/version=\"${VERSION}\",/" setup.py - name: Build and publish env: TWINE_USERNAME: __token__ TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }} run: | python setup.py bdist_wheel sdist twine upload dist/* ``` ## /.github/workflows/environment-corrupt-check.yaml ```yaml path="/.github/workflows/environment-corrupt-check.yaml" name: Environment Corruption Check on: push: branches: ["main"] paths: - requirements.txt pull_request: branches: ["main"] paths: - requirements.txt concurrency: group: ${{ github.workflow }}-${{ github.event_name }}-${{ github.ref }} cancel-in-progress: true jobs: test-python-versions: runs-on: ubuntu-latest strategy: matrix: python-version: ["3.11.11", "3.12.8", "3.13.2"] fail-fast: false steps: - name: Checkout repository uses: actions/checkout@v4 - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v5 with: python-version: ${{ matrix.python-version }} - name: Upgrade pip run: | python -m pip install --upgrade pip - name: Install dependencies run: | pip install -r requirements.txt ``` ## /.github/workflows/pr-autodiff.yaml ```yaml path="/.github/workflows/pr-autodiff.yaml" name: PR Diff Summarization on: # pull_request: # branches: [main] # types: [opened, ready_for_review, reopened] issue_comment: types: [created] permissions: contents: read pull-requests: write jobs: pr-diff-summarization: runs-on: ubuntu-latest if: | (github.event_name == 'pull_request') || (github.event_name == 'issue_comment' && contains(github.event.comment.body, '!pr-diff') && (github.event.comment.author_association == 'CONTRIBUTOR' || github.event.comment.author_association == 'COLLABORATOR' || github.event.comment.author_association == 'MEMBER' || github.event.comment.author_association == 'OWNER') && github.event.issue.pull_request) steps: - name: Get PR head SHA id: get-pr-sha run: | PR_URL="${{ github.event.issue.pull_request.url || github.event.pull_request.url }}" # https://api.github.com/repos/OpenManus/pulls/1 RESPONSE=$(curl -s -H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" $PR_URL) SHA=$(echo $RESPONSE | jq -r '.head.sha') TARGET_BRANCH=$(echo $RESPONSE | jq -r '.base.ref') echo "pr_sha=$SHA" >> $GITHUB_OUTPUT echo "target_branch=$TARGET_BRANCH" >> $GITHUB_OUTPUT echo "Retrieved PR head SHA from API: $SHA, target branch: $TARGET_BRANCH" - name: Check out code uses: actions/checkout@v4 with: ref: ${{ steps.get-pr-sha.outputs.pr_sha }} fetch-depth: 0 - name: Set up Python uses: actions/setup-python@v5 with: python-version: '3.11' - name: Install dependencies run: | python -m pip install --upgrade pip pip install openai requests - name: Create and run Python script env: OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} OPENAI_BASE_URL: ${{ secrets.OPENAI_BASE_URL }} GH_TOKEN: ${{ github.token }} PR_NUMBER: ${{ github.event.pull_request.number || github.event.issue.number }} TARGET_BRANCH: ${{ steps.get-pr-sha.outputs.target_branch }} run: |- cat << 'EOF' > /tmp/_workflow_core.py import os import subprocess import json import requests from openai import OpenAI def get_diff(): result = subprocess.run( ['git', 'diff', 'origin/' + os.getenv('TARGET_BRANCH') + '...HEAD'], capture_output=True, text=True, check=True) return '\n'.join( line for line in result.stdout.split('\n') if any(line.startswith(c) for c in ('+', '-')) and not line.startswith(('---', '+++')) )[:round(200000 * 0.4)] # Truncate to prevent overflow def generate_comment(diff_content): client = OpenAI( base_url=os.getenv("OPENAI_BASE_URL"), api_key=os.getenv("OPENAI_API_KEY") ) guidelines = ''' 1. English version first, Chinese Simplified version after 2. Example format: # Diff Report ## English - Added `ABC` class - Fixed `f()` behavior in `foo` module ### Comments Highlight - `config.toml` needs to be configured properly to make sure new features work as expected. ### Spelling/Offensive Content Check - No spelling mistakes or offensive content found in the code or comments. ## 中文(简体) - 新增了 `ABC` 类 - `foo` 模块中的 `f()` 行为已修复 ### 评论高亮 - `config.toml` 需要正确配置才能确保新功能正常运行。 ### 内容检查 - 没有发现代码或注释中的拼写错误或不当措辞。 3. Highlight non-English comments 4. Check for spelling/offensive content''' response = client.chat.completions.create( model="o3-mini", messages=[{ "role": "system", "content": "Generate bilingual code review feedback." }, { "role": "user", "content": f"Review these changes per guidelines:\n{guidelines}\n\nDIFF:\n{diff_content}" }] ) return response.choices[0].message.content def post_comment(comment): repo = os.getenv("GITHUB_REPOSITORY") pr_number = os.getenv("PR_NUMBER") headers = { "Authorization": f"Bearer {os.getenv('GH_TOKEN')}", "Accept": "application/vnd.github.v3+json" } url = f"https://api.github.com/repos/{repo}/issues/{pr_number}/comments" requests.post(url, json={"body": comment}, headers=headers) if __name__ == "__main__": diff_content = get_diff() if not diff_content.strip(): print("No meaningful diff detected.") exit(0) comment = generate_comment(diff_content) post_comment(comment) print("Comment posted successfully.") EOF python /tmp/_workflow_core.py ``` ## /.github/workflows/pre-commit.yaml ```yaml path="/.github/workflows/pre-commit.yaml" name: Pre-commit checks on: pull_request: branches: - '**' push: branches: - '**' jobs: pre-commit-check: runs-on: ubuntu-latest steps: - name: Checkout Source Code uses: actions/checkout@v4 - name: Set up Python 3.12 uses: actions/setup-python@v5 with: python-version: '3.12' - name: Install pre-commit and tools run: | python -m pip install --upgrade pip pip install pre-commit black==23.1.0 isort==5.12.0 autoflake==2.0.1 - name: Run pre-commit hooks run: pre-commit run --all-files ``` ## /.github/workflows/stale.yaml ```yaml path="/.github/workflows/stale.yaml" name: Close inactive issues on: schedule: - cron: "5 0 * * *" jobs: close-issues: runs-on: ubuntu-latest permissions: issues: write pull-requests: write steps: - uses: actions/stale@v9 with: days-before-issue-stale: 30 days-before-issue-close: 14 stale-issue-label: "inactive" stale-issue-message: "This issue has been inactive for 30 days. Please comment if you have updates." close-issue-message: "This issue was closed due to 45 days of inactivity. Reopen if still relevant." days-before-pr-stale: -1 days-before-pr-close: -1 repo-token: ${{ secrets.GITHUB_TOKEN }} ``` ## /.github/workflows/top-issues.yaml ```yaml path="/.github/workflows/top-issues.yaml" name: Top issues on: schedule: - cron: '0 0/2 * * *' workflow_dispatch: jobs: ShowAndLabelTopIssues: permissions: issues: write pull-requests: write actions: read contents: read name: Display and label top issues runs-on: ubuntu-latest if: github.repository == 'mannaandpoem/OpenManus' steps: - name: Run top issues action uses: rickstaa/top-issues-action@7e8dda5d5ae3087670f9094b9724a9a091fc3ba1 # v1.3.101 env: github_token: ${{ secrets.GITHUB_TOKEN }} with: label: true dashboard: true dashboard_show_total_reactions: true top_issues: true top_features: true top_bugs: true top_pull_requests: true top_list_size: 14 ``` ## /.gitignore ```gitignore path="/.gitignore" ### Project-specific ### # Logs logs/ # Data data/ # Workspace workspace/ ### Python ### # Byte-compiled / optimized / DLL files __pycache__/ *.py[cod] *$py.class # C extensions *.so # Distribution / packaging .Python build/ develop-eggs/ dist/ downloads/ eggs/ .eggs/ lib/ lib64/ parts/ sdist/ var/ wheels/ share/python-wheels/ *.egg-info/ .installed.cfg *.egg MANIFEST # PyInstaller # Usually these files are written by a python script from a template # before PyInstaller builds the exe, so as to inject date/other infos into it. *.manifest *.spec # Installer logs pip-log.txt pip-delete-this-directory.txt # Unit test / coverage reports htmlcov/ .tox/ .nox/ .coverage .coverage.* .cache nosetests.xml coverage.xml *.cover *.py,cover .hypothesis/ .pytest_cache/ cover/ # Translations *.mo *.pot # Django stuff: *.log local_settings.py db.sqlite3 db.sqlite3-journal # Flask stuff: instance/ .webassets-cache # Scrapy stuff: .scrapy # Sphinx documentation docs/_build/ # PyBuilder .pybuilder/ target/ # Jupyter Notebook .ipynb_checkpoints # IPython profile_default/ ipython_config.py # pyenv # For a library or package, you might want to ignore these files since the code is # intended to run in multiple environments; otherwise, check them in: # .python-version # pipenv # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. # However, in case of collaboration, if having platform-specific dependencies or dependencies # having no cross-platform support, pipenv may install dependencies that don't work, or not # install all needed dependencies. #Pipfile.lock # UV # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control. # This is especially recommended for binary packages to ensure reproducibility, and is more # commonly ignored for libraries. #uv.lock # poetry # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. # This is especially recommended for binary packages to ensure reproducibility, and is more # commonly ignored for libraries. # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control #poetry.lock # pdm # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. #pdm.lock # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it # in version control. # https://pdm.fming.dev/latest/usage/project/#working-with-version-control .pdm.toml .pdm-python .pdm-build/ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm __pypackages__/ # Celery stuff celerybeat-schedule celerybeat.pid # SageMath parsed files *.sage.py # Environments .env .venv env/ venv/ ENV/ env.bak/ venv.bak/ # Spyder project settings .spyderproject .spyproject # Rope project settings .ropeproject # mkdocs documentation /site # mypy .mypy_cache/ .dmypy.json dmypy.json # Pyre type checker .pyre/ # pytype static type analyzer .pytype/ # Cython debug symbols cython_debug/ # PyCharm # JetBrains specific template is maintained in a separate JetBrains.gitignore that can # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore # and can be added to the global gitignore or merged into this file. For a more nuclear # option (not recommended) you can uncomment the following to ignore the entire idea folder. .idea/ # PyPI configuration file .pypirc ### Visual Studio Code ### .vscode/* !.vscode/settings.json !.vscode/tasks.json !.vscode/launch.json !.vscode/extensions.json !.vscode/*.code-snippets # Local History for Visual Studio Code .history/ # Built Visual Studio Code Extensions *.vsix # OSX .DS_Store # node node_modules ``` ## /.pre-commit-config.yaml ```yaml path="/.pre-commit-config.yaml" repos: - repo: https://github.com/psf/black rev: 23.1.0 hooks: - id: black - repo: https://github.com/pre-commit/pre-commit-hooks rev: v4.4.0 hooks: - id: trailing-whitespace - id: end-of-file-fixer - id: check-yaml - id: check-added-large-files - repo: https://github.com/PyCQA/autoflake rev: v2.0.1 hooks: - id: autoflake args: [ --remove-all-unused-imports, --ignore-init-module-imports, --expand-star-imports, --remove-duplicate-keys, --remove-unused-variables, --recursive, --in-place, --exclude=__init__.py, ] files: \.py$ - repo: https://github.com/pycqa/isort rev: 5.12.0 hooks: - id: isort args: [ "--profile", "black", "--filter-files", "--lines-after-imports=2", ] ``` ## /.vscode/extensions.json ```json path="/.vscode/extensions.json" { "recommendations": [ "tamasfe.even-better-toml", "ms-python.black-formatter", "ms-python.isort" ], "unwantedRecommendations": [] } ``` ## /.vscode/settings.json ```json path="/.vscode/settings.json" { "[python]": { "editor.defaultFormatter": "ms-python.black-formatter", "editor.codeActionsOnSave": { "source.organizeImports": "always" } }, "[toml]": { "editor.defaultFormatter": "tamasfe.even-better-toml", }, "pre-commit-helper.runOnSave": "none", "pre-commit-helper.config": ".pre-commit-config.yaml", "evenBetterToml.schema.enabled": true, "evenBetterToml.schema.associations": { "^.+config[/\\\\].+\\.toml$": "../config/schema.config.json" }, "files.insertFinalNewline": true, "files.trimTrailingWhitespace": true, "editor.formatOnSave": true } ``` ## /CODE_OF_CONDUCT.md # Contributor Covenant Code of Conduct ## Our Pledge We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, or sexual identity and orientation. We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community. ## Our Standards Examples of behavior that contributes to a positive environment for our community include: * Demonstrating empathy and kindness toward other people. * Being respectful of differing opinions, viewpoints, and experiences. * Giving and gracefully accepting constructive feedback. * Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience. * Focusing on what is best not just for us as individuals, but for the overall community. Examples of unacceptable behavior include: * The use of sexualized language or imagery, and sexual attention or advances of any kind. * Trolling, insulting or derogatory comments, and personal or political attacks. * Public or private harassment. * Publishing others' private information, such as a physical or email address, without their explicit permission. * Other conduct which could reasonably be considered inappropriate in a professional setting. ## Enforcement Responsibilities Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful. Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate. ## Scope This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official email address, posting via an official social media account, or acting as an appointed representative at an online or offline event. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at mannaandpoem@gmail.com All complaints will be reviewed and investigated promptly and fairly. All community leaders are obligated to respect the privacy and security of the reporter of any incident. ## Enforcement Guidelines Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct: ### 1. Correction **Community Impact**: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community. **Consequence**: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested. ### 2. Warning **Community Impact**: A violation through a single incident or series of actions. **Consequence**: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban. ### 3. Temporary Ban **Community Impact**: A serious violation of community standards, including sustained inappropriate behavior. **Consequence**: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban. ### 4. Permanent Ban **Community Impact**: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals. **Consequence**: A permanent ban from any sort of public interaction within the community. ### Slack and Discord Etiquettes These Slack and Discord etiquette guidelines are designed to foster an inclusive, respectful, and productive environment for all community members. By following these best practices, we ensure effective communication and collaboration while minimizing disruptions. Let’s work together to build a supportive and welcoming community! - Communicate respectfully and professionally, avoiding sarcasm or harsh language, and remember that tone can be difficult to interpret in text. - Use threads for specific discussions to keep channels organized and easier to follow. - Tag others only when their input is critical or urgent, and use @here, @channel or @everyone sparingly to minimize disruptions. - Be patient, as open-source contributors and maintainers often have other commitments and may need time to respond. - Post questions or discussions in the most relevant channel ([discord - #general](https://discord.com/channels/1125308739348594758/1138430348557025341)). - When asking for help or raising issues, include necessary details like links, screenshots, or clear explanations to provide context. - Keep discussions in public channels whenever possible to allow others to benefit from the conversation, unless the matter is sensitive or private. - Always adhere to [our standards](https://github.com/mannaandpoem/OpenManus/blob/main/CODE_OF_CONDUCT.md#our-standards) to ensure a welcoming and collaborative environment. - If you choose to mute a channel, consider setting up alerts for topics that still interest you to stay engaged. For Slack, Go to Settings → Notifications → My Keywords to add specific keywords that will notify you when mentioned. For example, if you're here for discussions about LLMs, mute the channel if it’s too busy, but set notifications to alert you only when “LLMs” appears in messages. Also for Discord, go to the channel notifications and choose the option that best describes your need. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 2.1, available at [https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1]. Community Impact Guidelines were inspired by [Mozilla's code of conduct enforcement ladder][Mozilla CoC]. For answers to common questions about this code of conduct, see the FAQ at [https://www.contributor-covenant.org/faq][FAQ]. Translations are available at [https://www.contributor-covenant.org/translations][translations]. [homepage]: https://www.contributor-covenant.org [v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html [Mozilla CoC]: https://github.com/mozilla/diversity [FAQ]: https://www.contributor-covenant.org/faq [translations]: https://www.contributor-covenant.org/translations ## /Dockerfile ``` path="/Dockerfile" FROM python:3.12-slim WORKDIR /app/OpenManus RUN apt-get update && apt-get install -y --no-install-recommends git curl \ && rm -rf /var/lib/apt/lists/* \ && (command -v uv >/dev/null 2>&1 || pip install --no-cache-dir uv) COPY . . RUN uv pip install --system -r requirements.txt CMD ["bash"] ``` ## /LICENSE ``` path="/LICENSE" MIT License Copyright (c) 2025 manna_and_poem Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ``` ## /README.md

English | [中文](README_zh.md) | [한국어](README_ko.md) | [日本語](README_ja.md) [![GitHub stars](https://img.shields.io/github/stars/mannaandpoem/OpenManus?style=social)](https://github.com/mannaandpoem/OpenManus/stargazers)   [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)   [![Discord Follow](https://dcbadge.vercel.app/api/server/DYn29wFk9z?style=flat)](https://discord.gg/DYn29wFk9z) [![Demo](https://img.shields.io/badge/Demo-Hugging%20Face-yellow)](https://huggingface.co/spaces/lyh-917/OpenManusDemo) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15186407.svg)](https://doi.org/10.5281/zenodo.15186407) # 👋 OpenManus Manus is incredible, but OpenManus can achieve any idea without an *Invite Code* 🛫! Our team members [@Xinbin Liang](https://github.com/mannaandpoem) and [@Jinyu Xiang](https://github.com/XiangJinyu) (core authors), along with [@Zhaoyang Yu](https://github.com/MoshiQAQ), [@Jiayi Zhang](https://github.com/didiforgithub), and [@Sirui Hong](https://github.com/stellaHSR), we are from [@MetaGPT](https://github.com/geekan/MetaGPT). The prototype is launched within 3 hours and we are keeping building! It's a simple implementation, so we welcome any suggestions, contributions, and feedback! Enjoy your own agent with OpenManus! We're also excited to introduce [OpenManus-RL](https://github.com/OpenManus/OpenManus-RL), an open-source project dedicated to reinforcement learning (RL)- based (such as GRPO) tuning methods for LLM agents, developed collaboratively by researchers from UIUC and OpenManus. ## Project Demo ## Installation We provide two installation methods. Method 2 (using uv) is recommended for faster installation and better dependency management. ### Method 1: Using conda 1. Create a new conda environment: ```bash conda create -n open_manus python=3.12 conda activate open_manus ``` 2. Clone the repository: ```bash git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus ``` 3. Install dependencies: ```bash pip install -r requirements.txt ``` ### Method 2: Using uv (Recommended) 1. Install uv (A fast Python package installer and resolver): ```bash curl -LsSf https://astral.sh/uv/install.sh | sh ``` 2. Clone the repository: ```bash git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus ``` 3. Create a new virtual environment and activate it: ```bash uv venv --python 3.12 source .venv/bin/activate # On Unix/macOS # Or on Windows: # .venv\Scripts\activate ``` 4. Install dependencies: ```bash uv pip install -r requirements.txt ``` ### Browser Automation Tool (Optional) ```bash playwright install ``` ## Configuration OpenManus requires configuration for the LLM APIs it uses. Follow these steps to set up your configuration: 1. Create a `config.toml` file in the `config` directory (you can copy from the example): ```bash cp config/config.example.toml config/config.toml ``` 2. Edit `config/config.toml` to add your API keys and customize settings: ```toml # Global LLM configuration [llm] model = "gpt-4o" base_url = "https://api.openai.com/v1" api_key = "sk-..." # Replace with your actual API key max_tokens = 4096 temperature = 0.0 # Optional configuration for specific LLM models [llm.vision] model = "gpt-4o" base_url = "https://api.openai.com/v1" api_key = "sk-..." # Replace with your actual API key ``` ## Quick Start One line for run OpenManus: ```bash python main.py ``` Then input your idea via terminal! For MCP tool version, you can run: ```bash python run_mcp.py ``` For unstable multi-agent version, you also can run: ```bash python run_flow.py ``` ## How to contribute We welcome any friendly suggestions and helpful contributions! Just create issues or submit pull requests. Or contact @mannaandpoem via 📧email: mannaandpoem@gmail.com **Note**: Before submitting a pull request, please use the pre-commit tool to check your changes. Run `pre-commit run --all-files` to execute the checks. ## Community Group Join our networking group on Feishu and share your experience with other developers!
OpenManus 交流群
## Star History [![Star History Chart](https://api.star-history.com/svg?repos=mannaandpoem/OpenManus&type=Date)](https://star-history.com/#mannaandpoem/OpenManus&Date) ## Sponsors Thanks to [PPIO](https://ppinfra.com/user/register?invited_by=OCPKCN&utm_source=github_openmanus&utm_medium=github_readme&utm_campaign=link) for computing source support. > PPIO: The most affordable and easily-integrated MaaS and GPU cloud solution. ## Acknowledgement Thanks to [anthropic-computer-use](https://github.com/anthropics/anthropic-quickstarts/tree/main/computer-use-demo) and [browser-use](https://github.com/browser-use/browser-use) for providing basic support for this project! Additionally, we are grateful to [AAAJ](https://github.com/metauto-ai/agent-as-a-judge), [MetaGPT](https://github.com/geekan/MetaGPT), [OpenHands](https://github.com/All-Hands-AI/OpenHands) and [SWE-agent](https://github.com/SWE-agent/SWE-agent). We also thank stepfun(阶跃星辰) for supporting our Hugging Face demo space. OpenManus is built by contributors from MetaGPT. Huge thanks to this agent community! ## Cite ```bibtex @misc{openmanus2025, author = {Xinbin Liang and Jinyu Xiang and Zhaoyang Yu and Jiayi Zhang and Sirui Hong and Sheng Fan and Xiao Tang}, title = {OpenManus: An open-source framework for building general AI agents}, year = {2025}, publisher = {Zenodo}, doi = {10.5281/zenodo.15186407}, url = {https://doi.org/10.5281/zenodo.15186407}, } ``` ## /README_ja.md

[English](README.md) | [中文](README_zh.md) | [한국어](README_ko.md) | 日本語 [![GitHub stars](https://img.shields.io/github/stars/mannaandpoem/OpenManus?style=social)](https://github.com/mannaandpoem/OpenManus/stargazers)   [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)   [![Discord Follow](https://dcbadge.vercel.app/api/server/DYn29wFk9z?style=flat)](https://discord.gg/DYn29wFk9z) [![Demo](https://img.shields.io/badge/Demo-Hugging%20Face-yellow)](https://huggingface.co/spaces/lyh-917/OpenManusDemo) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15186407.svg)](https://doi.org/10.5281/zenodo.15186407) # 👋 OpenManus Manusは素晴らしいですが、OpenManusは*招待コード*なしでどんなアイデアも実現できます!🛫 私たちのチームメンバー [@Xinbin Liang](https://github.com/mannaandpoem) と [@Jinyu Xiang](https://github.com/XiangJinyu)(主要開発者)、そして [@Zhaoyang Yu](https://github.com/MoshiQAQ)、[@Jiayi Zhang](https://github.com/didiforgithub)、[@Sirui Hong](https://github.com/stellaHSR) は [@MetaGPT](https://github.com/geekan/MetaGPT) から来ました。プロトタイプは3時間以内に立ち上げられ、継続的に開発を進めています! これはシンプルな実装ですので、どんな提案、貢献、フィードバックも歓迎します! OpenManusで自分だけのエージェントを楽しみましょう! また、UIUCとOpenManusの研究者が共同開発した[OpenManus-RL](https://github.com/OpenManus/OpenManus-RL)をご紹介できることを嬉しく思います。これは強化学習(RL)ベース(GRPOなど)のLLMエージェントチューニング手法に特化したオープンソースプロジェクトです。 ## プロジェクトデモ ## インストール方法 インストール方法は2つ提供しています。方法2(uvを使用)は、より高速なインストールと優れた依存関係管理のため推奨されています。 ### 方法1:condaを使用 1. 新しいconda環境を作成します: ```bash conda create -n open_manus python=3.12 conda activate open_manus ``` 2. リポジトリをクローンします: ```bash git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus ``` 3. 依存関係をインストールします: ```bash pip install -r requirements.txt ``` ### 方法2:uvを使用(推奨) 1. uv(高速なPythonパッケージインストーラーと管理機能)をインストールします: ```bash curl -LsSf https://astral.sh/uv/install.sh | sh ``` 2. リポジトリをクローンします: ```bash git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus ``` 3. 新しい仮想環境を作成してアクティベートします: ```bash uv venv --python 3.12 source .venv/bin/activate # Unix/macOSの場合 # Windowsの場合: # .venv\Scripts\activate ``` 4. 依存関係をインストールします: ```bash uv pip install -r requirements.txt ``` ### ブラウザ自動化ツール(オプション) ```bash playwright install ``` ## 設定 OpenManusを使用するには、LLM APIの設定が必要です。以下の手順に従って設定してください: 1. `config`ディレクトリに`config.toml`ファイルを作成します(サンプルからコピーできます): ```bash cp config/config.example.toml config/config.toml ``` 2. `config/config.toml`を編集してAPIキーを追加し、設定をカスタマイズします: ```toml # グローバルLLM設定 [llm] model = "gpt-4o" base_url = "https://api.openai.com/v1" api_key = "sk-..." # 実際のAPIキーに置き換えてください max_tokens = 4096 temperature = 0.0 # 特定のLLMモデル用のオプション設定 [llm.vision] model = "gpt-4o" base_url = "https://api.openai.com/v1" api_key = "sk-..." # 実際のAPIキーに置き換えてください ``` ## クイックスタート OpenManusを実行する一行コマンド: ```bash python main.py ``` その後、ターミナルからプロンプトを入力してください! MCP ツールバージョンを使用する場合は、以下を実行します: ```bash python run_mcp.py ``` 開発中のマルチエージェントバージョンを試すには、以下を実行します: ```bash python run_flow.py ``` ## 貢献方法 我々は建設的な意見や有益な貢献を歓迎します!issueを作成するか、プルリクエストを提出してください。 または @mannaandpoem に📧メールでご連絡ください:mannaandpoem@gmail.com **注意**: プルリクエストを送信する前に、pre-commitツールを使用して変更を確認してください。`pre-commit run --all-files`を実行してチェックを実行します。 ## コミュニティグループ Feishuのネットワーキンググループに参加して、他の開発者と経験を共有しましょう!
OpenManus 交流群
## スター履歴 [![Star History Chart](https://api.star-history.com/svg?repos=mannaandpoem/OpenManus&type=Date)](https://star-history.com/#mannaandpoem/OpenManus&Date) ## 謝辞 このプロジェクトの基本的なサポートを提供してくれた[anthropic-computer-use](https://github.com/anthropics/anthropic-quickstarts/tree/main/computer-use-demo) と[browser-use](https://github.com/browser-use/browser-use)に感謝します! さらに、[AAAJ](https://github.com/metauto-ai/agent-as-a-judge)、[MetaGPT](https://github.com/geekan/MetaGPT)、[OpenHands](https://github.com/All-Hands-AI/OpenHands)、[SWE-agent](https://github.com/SWE-agent/SWE-agent)にも感謝します。 また、Hugging Face デモスペースをサポートしてくださった阶跃星辰 (stepfun)にも感謝いたします。 OpenManusはMetaGPTのコントリビューターによって構築されました。このエージェントコミュニティに大きな感謝を! ## 引用 ```bibtex @misc{openmanus2025, author = {Xinbin Liang and Jinyu Xiang and Zhaoyang Yu and Jiayi Zhang and Sirui Hong and Sheng Fan and Xiao Tang}, title = {OpenManus: An open-source framework for building general AI agents}, year = {2025}, publisher = {Zenodo}, doi = {10.5281/zenodo.15186407}, url = {https://doi.org/10.5281/zenodo.15186407}, } ``` ## /README_ko.md

[English](README.md) | [中文](README_zh.md) | 한국어 | [日本語](README_ja.md) [![GitHub stars](https://img.shields.io/github/stars/mannaandpoem/OpenManus?style=social)](https://github.com/mannaandpoem/OpenManus/stargazers)   [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)   [![Discord Follow](https://dcbadge.vercel.app/api/server/DYn29wFk9z?style=flat)](https://discord.gg/DYn29wFk9z) [![Demo](https://img.shields.io/badge/Demo-Hugging%20Face-yellow)](https://huggingface.co/spaces/lyh-917/OpenManusDemo) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15186407.svg)](https://doi.org/10.5281/zenodo.15186407) # 👋 OpenManus Manus는 놀라운 도구지만, OpenManus는 *초대 코드* 없이도 모든 아이디어를 실현할 수 있습니다! 🛫 우리 팀의 멤버인 [@Xinbin Liang](https://github.com/mannaandpoem)와 [@Jinyu Xiang](https://github.com/XiangJinyu) (핵심 작성자), 그리고 [@Zhaoyang Yu](https://github.com/MoshiQAQ), [@Jiayi Zhang](https://github.com/didiforgithub), [@Sirui Hong](https://github.com/stellaHSR)이 함께 했습니다. 우리는 [@MetaGPT](https://github.com/geekan/MetaGPT)로부터 왔습니다. 프로토타입은 단 3시간 만에 출시되었으며, 계속해서 발전하고 있습니다! 이 프로젝트는 간단한 구현에서 시작되었으며, 여러분의 제안, 기여 및 피드백을 환영합니다! OpenManus를 통해 여러분만의 에이전트를 즐겨보세요! 또한 [OpenManus-RL](https://github.com/OpenManus/OpenManus-RL)을 소개하게 되어 기쁩니다. OpenManus와 UIUC 연구자들이 공동 개발한 이 오픈소스 프로젝트는 LLM 에이전트에 대해 강화 학습(RL) 기반 (예: GRPO) 튜닝 방법을 제공합니다. ## 프로젝트 데모 ## 설치 방법 두 가지 설치 방법을 제공합니다. **방법 2 (uv 사용)** 이 더 빠른 설치와 효율적인 종속성 관리를 위해 권장됩니다. ### 방법 1: conda 사용 1. 새로운 conda 환경을 생성합니다: ```bash conda create -n open_manus python=3.12 conda activate open_manus ``` 2. 저장소를 클론합니다: ```bash git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus ``` 3. 종속성을 설치합니다: ```bash pip install -r requirements.txt ``` ### 방법 2: uv 사용 (권장) 1. uv를 설치합니다. (빠른 Python 패키지 설치 및 종속성 관리 도구): ```bash curl -LsSf https://astral.sh/uv/install.sh | sh ``` 2. 저장소를 클론합니다: ```bash git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus ``` 3. 새로운 가상 환경을 생성하고 활성화합니다: ```bash uv venv --python 3.12 source .venv/bin/activate # Unix/macOS의 경우 # Windows의 경우: # .venv\Scripts\activate ``` 4. 종속성을 설치합니다: ```bash uv pip install -r requirements.txt ``` ### 브라우저 자동화 도구 (선택사항) ```bash playwright install ``` ## 설정 방법 OpenManus를 사용하려면 사용하는 LLM API에 대한 설정이 필요합니다. 아래 단계를 따라 설정을 완료하세요: 1. `config` 디렉토리에 `config.toml` 파일을 생성하세요 (예제 파일을 복사하여 사용할 수 있습니다): ```bash cp config/config.example.toml config/config.toml ``` 2. `config/config.toml` 파일을 편집하여 API 키를 추가하고 설정을 커스터마이징하세요: ```toml # 전역 LLM 설정 [llm] model = "gpt-4o" base_url = "https://api.openai.com/v1" api_key = "sk-..." # 실제 API 키로 변경하세요 max_tokens = 4096 temperature = 0.0 # 특정 LLM 모델에 대한 선택적 설정 [llm.vision] model = "gpt-4o" base_url = "https://api.openai.com/v1" api_key = "sk-..." # 실제 API 키로 변경하세요 ``` ## 빠른 시작 OpenManus를 실행하는 한 줄 명령어: ```bash python main.py ``` 이후 터미널에서 아이디어를 작성하세요! MCP 도구 버전을 사용하려면 다음을 실행하세요: ```bash python run_mcp.py ``` 불안정한 멀티 에이전트 버전을 실행하려면 다음을 실행할 수 있습니다: ```bash python run_flow.py ``` ## 기여 방법 모든 친절한 제안과 유용한 기여를 환영합니다! 이슈를 생성하거나 풀 리퀘스트를 제출해 주세요. 또는 📧 메일로 연락주세요. @mannaandpoem : mannaandpoem@gmail.com **참고**: pull request를 제출하기 전에 pre-commit 도구를 사용하여 변경 사항을 확인하십시오. `pre-commit run --all-files`를 실행하여 검사를 실행합니다. ## 커뮤니티 그룹 Feishu 네트워킹 그룹에 참여하여 다른 개발자들과 경험을 공유하세요!
OpenManus 交流群
## Star History [![Star History Chart](https://api.star-history.com/svg?repos=mannaandpoem/OpenManus&type=Date)](https://star-history.com/#mannaandpoem/OpenManus&Date) ## 감사의 글 이 프로젝트에 기본적인 지원을 제공해 주신 [anthropic-computer-use](https://github.com/anthropics/anthropic-quickstarts/tree/main/computer-use-demo)와 [browser-use](https://github.com/browser-use/browser-use)에게 감사드립니다! 또한, [AAAJ](https://github.com/metauto-ai/agent-as-a-judge), [MetaGPT](https://github.com/geekan/MetaGPT), [OpenHands](https://github.com/All-Hands-AI/OpenHands), [SWE-agent](https://github.com/SWE-agent/SWE-agent)에 깊은 감사를 드립니다. 또한 Hugging Face 데모 공간을 지원해 주신 阶跃星辰 (stepfun)에게 감사드립니다. OpenManus는 MetaGPT 기여자들에 의해 개발되었습니다. 이 에이전트 커뮤니티에 깊은 감사를 전합니다! ## 인용 ```bibtex @misc{openmanus2025, author = {Xinbin Liang and Jinyu Xiang and Zhaoyang Yu and Jiayi Zhang and Sirui Hong and Sheng Fan and Xiao Tang}, title = {OpenManus: An open-source framework for building general AI agents}, year = {2025}, publisher = {Zenodo}, doi = {10.5281/zenodo.15186407}, url = {https://doi.org/10.5281/zenodo.15186407}, } ``` ## /README_zh.md

[English](README.md) | 中文 | [한국어](README_ko.md) | [日本語](README_ja.md) [![GitHub stars](https://img.shields.io/github/stars/mannaandpoem/OpenManus?style=social)](https://github.com/mannaandpoem/OpenManus/stargazers)   [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)   [![Discord Follow](https://dcbadge.vercel.app/api/server/DYn29wFk9z?style=flat)](https://discord.gg/DYn29wFk9z) [![Demo](https://img.shields.io/badge/Demo-Hugging%20Face-yellow)](https://huggingface.co/spaces/lyh-917/OpenManusDemo) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15186407.svg)](https://doi.org/10.5281/zenodo.15186407) # 👋 OpenManus Manus 非常棒,但 OpenManus 无需邀请码即可实现任何创意 🛫! 我们的团队成员 [@Xinbin Liang](https://github.com/mannaandpoem) 和 [@Jinyu Xiang](https://github.com/XiangJinyu)(核心作者),以及 [@Zhaoyang Yu](https://github.com/MoshiQAQ)、[@Jiayi Zhang](https://github.com/didiforgithub) 和 [@Sirui Hong](https://github.com/stellaHSR),来自 [@MetaGPT](https://github.com/geekan/MetaGPT)团队。我们在 3 小时内完成了开发并持续迭代中! 这是一个简洁的实现方案,欢迎任何建议、贡献和反馈! 用 OpenManus 开启你的智能体之旅吧! 我们也非常高兴地向大家介绍 [OpenManus-RL](https://github.com/OpenManus/OpenManus-RL),这是一个专注于基于强化学习(RL,例如 GRPO)的方法来优化大语言模型(LLM)智能体的开源项目,由来自UIUC 和 OpenManus 的研究人员合作开发。 ## 项目演示 ## 安装指南 我们提供两种安装方式。推荐使用方式二(uv),因为它能提供更快的安装速度和更好的依赖管理。 ### 方式一:使用 conda 1. 创建新的 conda 环境: ```bash conda create -n open_manus python=3.12 conda activate open_manus ``` 2. 克隆仓库: ```bash git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus ``` 3. 安装依赖: ```bash pip install -r requirements.txt ``` ### 方式二:使用 uv(推荐) 1. 安装 uv(一个快速的 Python 包管理器): ```bash curl -LsSf https://astral.sh/uv/install.sh | sh ``` 2. 克隆仓库: ```bash git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus ``` 3. 创建并激活虚拟环境: ```bash uv venv --python 3.12 source .venv/bin/activate # Unix/macOS 系统 # Windows 系统使用: # .venv\Scripts\activate ``` 4. 安装依赖: ```bash uv pip install -r requirements.txt ``` ### 浏览器自动化工具(可选) ```bash playwright install ``` ## 配置说明 OpenManus 需要配置使用的 LLM API,请按以下步骤设置: 1. 在 `config` 目录创建 `config.toml` 文件(可从示例复制): ```bash cp config/config.example.toml config/config.toml ``` 2. 编辑 `config/config.toml` 添加 API 密钥和自定义设置: ```toml # 全局 LLM 配置 [llm] model = "gpt-4o" base_url = "https://api.openai.com/v1" api_key = "sk-..." # 替换为真实 API 密钥 max_tokens = 4096 temperature = 0.0 # 可选特定 LLM 模型配置 [llm.vision] model = "gpt-4o" base_url = "https://api.openai.com/v1" api_key = "sk-..." # 替换为真实 API 密钥 ``` ## 快速启动 一行命令运行 OpenManus: ```bash python main.py ``` 然后通过终端输入你的创意! 如需使用 MCP 工具版本,可运行: ```bash python run_mcp.py ``` 如需体验不稳定的多智能体版本,可运行: ```bash python run_flow.py ``` ## 贡献指南 我们欢迎任何友好的建议和有价值的贡献!可以直接创建 issue 或提交 pull request。 或通过 📧 邮件联系 @mannaandpoem:mannaandpoem@gmail.com **注意**: 在提交 pull request 之前,请使用 pre-commit 工具检查您的更改。运行 `pre-commit run --all-files` 来执行检查。 ## 交流群 加入我们的飞书交流群,与其他开发者分享经验!
OpenManus 交流群
## Star 数量 [![Star History Chart](https://api.star-history.com/svg?repos=mannaandpoem/OpenManus&type=Date)](https://star-history.com/#mannaandpoem/OpenManus&Date) ## 赞助商 感谢[PPIO](https://ppinfra.com/user/register?invited_by=OCPKCN&utm_source=github_openmanus&utm_medium=github_readme&utm_campaign=link) 提供的算力支持。 > PPIO派欧云:一键调用高性价比的开源模型API和GPU容器 ## 致谢 特别感谢 [anthropic-computer-use](https://github.com/anthropics/anthropic-quickstarts/tree/main/computer-use-demo) 和 [browser-use](https://github.com/browser-use/browser-use) 为本项目提供的基础支持! 此外,我们感谢 [AAAJ](https://github.com/metauto-ai/agent-as-a-judge),[MetaGPT](https://github.com/geekan/MetaGPT),[OpenHands](https://github.com/All-Hands-AI/OpenHands) 和 [SWE-agent](https://github.com/SWE-agent/SWE-agent). 我们也感谢阶跃星辰 (stepfun) 提供的 Hugging Face 演示空间支持。 OpenManus 由 MetaGPT 社区的贡献者共同构建,感谢这个充满活力的智能体开发者社区! ## 引用 ```bibtex @misc{openmanus2025, author = {Xinbin Liang and Jinyu Xiang and Zhaoyang Yu and Jiayi Zhang and Sirui Hong and Sheng Fan and Xiao Tang}, title = {OpenManus: An open-source framework for building general AI agents}, year = {2025}, publisher = {Zenodo}, doi = {10.5281/zenodo.15186407}, url = {https://doi.org/10.5281/zenodo.15186407}, } ``` ## /app/__init__.py ```py path="/app/__init__.py" # Python version check: 3.11-3.13 import sys if sys.version_info < (3, 11) or sys.version_info > (3, 13): print( "Warning: Unsupported Python version {ver}, please use 3.11-3.13".format( ver=".".join(map(str, sys.version_info)) ) ) ``` ## /app/agent/__init__.py ```py path="/app/agent/__init__.py" from app.agent.base import BaseAgent from app.agent.browser import BrowserAgent from app.agent.mcp import MCPAgent from app.agent.react import ReActAgent from app.agent.swe import SWEAgent from app.agent.toolcall import ToolCallAgent __all__ = [ "BaseAgent", "BrowserAgent", "ReActAgent", "SWEAgent", "ToolCallAgent", "MCPAgent", ] ``` ## /app/agent/base.py ```py path="/app/agent/base.py" from abc import ABC, abstractmethod from contextlib import asynccontextmanager from typing import List, Optional from pydantic import BaseModel, Field, model_validator from app.llm import LLM from app.logger import logger from app.sandbox.client import SANDBOX_CLIENT from app.schema import ROLE_TYPE, AgentState, Memory, Message class BaseAgent(BaseModel, ABC): """Abstract base class for managing agent state and execution. Provides foundational functionality for state transitions, memory management, and a step-based execution loop. Subclasses must implement the `step` method. """ # Core attributes name: str = Field(..., description="Unique name of the agent") description: Optional[str] = Field(None, description="Optional agent description") # Prompts system_prompt: Optional[str] = Field( None, description="System-level instruction prompt" ) next_step_prompt: Optional[str] = Field( None, description="Prompt for determining next action" ) # Dependencies llm: LLM = Field(default_factory=LLM, description="Language model instance") memory: Memory = Field(default_factory=Memory, description="Agent's memory store") state: AgentState = Field( default=AgentState.IDLE, description="Current agent state" ) # Execution control max_steps: int = Field(default=10, description="Maximum steps before termination") current_step: int = Field(default=0, description="Current step in execution") duplicate_threshold: int = 2 class Config: arbitrary_types_allowed = True extra = "allow" # Allow extra fields for flexibility in subclasses @model_validator(mode="after") def initialize_agent(self) -> "BaseAgent": """Initialize agent with default settings if not provided.""" if self.llm is None or not isinstance(self.llm, LLM): self.llm = LLM(config_name=self.name.lower()) if not isinstance(self.memory, Memory): self.memory = Memory() return self @asynccontextmanager async def state_context(self, new_state: AgentState): """Context manager for safe agent state transitions. Args: new_state: The state to transition to during the context. Yields: None: Allows execution within the new state. Raises: ValueError: If the new_state is invalid. """ if not isinstance(new_state, AgentState): raise ValueError(f"Invalid state: {new_state}") previous_state = self.state self.state = new_state try: yield except Exception as e: self.state = AgentState.ERROR # Transition to ERROR on failure raise e finally: self.state = previous_state # Revert to previous state def update_memory( self, role: ROLE_TYPE, # type: ignore content: str, base64_image: Optional[str] = None, **kwargs, ) -> None: """Add a message to the agent's memory. Args: role: The role of the message sender (user, system, assistant, tool). content: The message content. base64_image: Optional base64 encoded image. **kwargs: Additional arguments (e.g., tool_call_id for tool messages). Raises: ValueError: If the role is unsupported. """ message_map = { "user": Message.user_message, "system": Message.system_message, "assistant": Message.assistant_message, "tool": lambda content, **kw: Message.tool_message(content, **kw), } if role not in message_map: raise ValueError(f"Unsupported message role: {role}") # Create message with appropriate parameters based on role kwargs = {"base64_image": base64_image, **(kwargs if role == "tool" else {})} self.memory.add_message(message_map[role](content, **kwargs)) async def run(self, request: Optional[str] = None) -> str: """Execute the agent's main loop asynchronously. Args: request: Optional initial user request to process. Returns: A string summarizing the execution results. Raises: RuntimeError: If the agent is not in IDLE state at start. """ if self.state != AgentState.IDLE: raise RuntimeError(f"Cannot run agent from state: {self.state}") if request: self.update_memory("user", request) results: List[str] = [] async with self.state_context(AgentState.RUNNING): while ( self.current_step < self.max_steps and self.state != AgentState.FINISHED ): self.current_step += 1 logger.info(f"Executing step {self.current_step}/{self.max_steps}") step_result = await self.step() # Check for stuck state if self.is_stuck(): self.handle_stuck_state() results.append(f"Step {self.current_step}: {step_result}") if self.current_step >= self.max_steps: self.current_step = 0 self.state = AgentState.IDLE results.append(f"Terminated: Reached max steps ({self.max_steps})") await SANDBOX_CLIENT.cleanup() return "\n".join(results) if results else "No steps executed" @abstractmethod async def step(self) -> str: """Execute a single step in the agent's workflow. Must be implemented by subclasses to define specific behavior. """ def handle_stuck_state(self): """Handle stuck state by adding a prompt to change strategy""" stuck_prompt = "\ Observed duplicate responses. Consider new strategies and avoid repeating ineffective paths already attempted." self.next_step_prompt = f"{stuck_prompt}\n{self.next_step_prompt}" logger.warning(f"Agent detected stuck state. Added prompt: {stuck_prompt}") def is_stuck(self) -> bool: """Check if the agent is stuck in a loop by detecting duplicate content""" if len(self.memory.messages) < 2: return False last_message = self.memory.messages[-1] if not last_message.content: return False # Count identical content occurrences duplicate_count = sum( 1 for msg in reversed(self.memory.messages[:-1]) if msg.role == "assistant" and msg.content == last_message.content ) return duplicate_count >= self.duplicate_threshold @property def messages(self) -> List[Message]: """Retrieve a list of messages from the agent's memory.""" return self.memory.messages @messages.setter def messages(self, value: List[Message]): """Set the list of messages in the agent's memory.""" self.memory.messages = value ``` ## /app/agent/browser.py ```py path="/app/agent/browser.py" import json from typing import TYPE_CHECKING, Optional from pydantic import Field, model_validator from app.agent.toolcall import ToolCallAgent from app.logger import logger from app.prompt.browser import NEXT_STEP_PROMPT, SYSTEM_PROMPT from app.schema import Message, ToolChoice from app.tool import BrowserUseTool, Terminate, ToolCollection # Avoid circular import if BrowserAgent needs BrowserContextHelper if TYPE_CHECKING: from app.agent.base import BaseAgent # Or wherever memory is defined class BrowserContextHelper: def __init__(self, agent: "BaseAgent"): self.agent = agent self._current_base64_image: Optional[str] = None async def get_browser_state(self) -> Optional[dict]: browser_tool = self.agent.available_tools.get_tool(BrowserUseTool().name) if not browser_tool or not hasattr(browser_tool, "get_current_state"): logger.warning("BrowserUseTool not found or doesn't have get_current_state") return None try: result = await browser_tool.get_current_state() if result.error: logger.debug(f"Browser state error: {result.error}") return None if hasattr(result, "base64_image") and result.base64_image: self._current_base64_image = result.base64_image else: self._current_base64_image = None return json.loads(result.output) except Exception as e: logger.debug(f"Failed to get browser state: {str(e)}") return None async def format_next_step_prompt(self) -> str: """Gets browser state and formats the browser prompt.""" browser_state = await self.get_browser_state() url_info, tabs_info, content_above_info, content_below_info = "", "", "", "" results_info = "" # Or get from agent if needed elsewhere if browser_state and not browser_state.get("error"): url_info = f"\n URL: {browser_state.get('url', 'N/A')}\n Title: {browser_state.get('title', 'N/A')}" tabs = browser_state.get("tabs", []) if tabs: tabs_info = f"\n {len(tabs)} tab(s) available" pixels_above = browser_state.get("pixels_above", 0) pixels_below = browser_state.get("pixels_below", 0) if pixels_above > 0: content_above_info = f" ({pixels_above} pixels)" if pixels_below > 0: content_below_info = f" ({pixels_below} pixels)" if self._current_base64_image: image_message = Message.user_message( content="Current browser screenshot:", base64_image=self._current_base64_image, ) self.agent.memory.add_message(image_message) self._current_base64_image = None # Consume the image after adding return NEXT_STEP_PROMPT.format( url_placeholder=url_info, tabs_placeholder=tabs_info, content_above_placeholder=content_above_info, content_below_placeholder=content_below_info, results_placeholder=results_info, ) async def cleanup_browser(self): browser_tool = self.agent.available_tools.get_tool(BrowserUseTool().name) if browser_tool and hasattr(browser_tool, "cleanup"): await browser_tool.cleanup() class BrowserAgent(ToolCallAgent): """ A browser agent that uses the browser_use library to control a browser. This agent can navigate web pages, interact with elements, fill forms, extract content, and perform other browser-based actions to accomplish tasks. """ name: str = "browser" description: str = "A browser agent that can control a browser to accomplish tasks" system_prompt: str = SYSTEM_PROMPT next_step_prompt: str = NEXT_STEP_PROMPT max_observe: int = 10000 max_steps: int = 20 # Configure the available tools available_tools: ToolCollection = Field( default_factory=lambda: ToolCollection(BrowserUseTool(), Terminate()) ) # Use Auto for tool choice to allow both tool usage and free-form responses tool_choices: ToolChoice = ToolChoice.AUTO special_tool_names: list[str] = Field(default_factory=lambda: [Terminate().name]) browser_context_helper: Optional[BrowserContextHelper] = None @model_validator(mode="after") def initialize_helper(self) -> "BrowserAgent": self.browser_context_helper = BrowserContextHelper(self) return self async def think(self) -> bool: """Process current state and decide next actions using tools, with browser state info added""" self.next_step_prompt = ( await self.browser_context_helper.format_next_step_prompt() ) return await super().think() async def cleanup(self): """Clean up browser agent resources by calling parent cleanup.""" await self.browser_context_helper.cleanup_browser() ``` ## /app/agent/data_analysis.py ```py path="/app/agent/data_analysis.py" from pydantic import Field from app.agent.toolcall import ToolCallAgent from app.config import config from app.prompt.visualization import NEXT_STEP_PROMPT, SYSTEM_PROMPT from app.tool import Terminate, ToolCollection from app.tool.chart_visualization.chart_prepare import VisualizationPrepare from app.tool.chart_visualization.data_visualization import DataVisualization from app.tool.chart_visualization.python_execute import NormalPythonExecute class DataAnalysis(ToolCallAgent): """ A data analysis agent that uses planning to solve various data analysis tasks. This agent extends ToolCallAgent with a comprehensive set of tools and capabilities, including Data Analysis, Chart Visualization, Data Report. """ name: str = "DataAnalysis" description: str = "An analytical agent that utilizes multiple tools to solve diverse data analysis tasks" system_prompt: str = SYSTEM_PROMPT.format(directory=config.workspace_root) next_step_prompt: str = NEXT_STEP_PROMPT max_observe: int = 15000 max_steps: int = 20 # Add general-purpose tools to the tool collection available_tools: ToolCollection = Field( default_factory=lambda: ToolCollection( NormalPythonExecute(), VisualizationPrepare(), DataVisualization(), Terminate(), ) ) ``` ## /app/agent/manus.py ```py path="/app/agent/manus.py" from typing import Dict, List, Optional from pydantic import Field, model_validator from app.agent.browser import BrowserContextHelper from app.agent.toolcall import ToolCallAgent from app.config import config from app.logger import logger from app.prompt.manus import NEXT_STEP_PROMPT, SYSTEM_PROMPT from app.tool import Terminate, ToolCollection from app.tool.ask_human import AskHuman from app.tool.browser_use_tool import BrowserUseTool from app.tool.mcp import MCPClients, MCPClientTool from app.tool.python_execute import PythonExecute from app.tool.str_replace_editor import StrReplaceEditor class Manus(ToolCallAgent): """A versatile general-purpose agent with support for both local and MCP tools.""" name: str = "Manus" description: str = "A versatile agent that can solve various tasks using multiple tools including MCP-based tools" system_prompt: str = SYSTEM_PROMPT.format(directory=config.workspace_root) next_step_prompt: str = NEXT_STEP_PROMPT max_observe: int = 10000 max_steps: int = 20 # MCP clients for remote tool access mcp_clients: MCPClients = Field(default_factory=MCPClients) # Add general-purpose tools to the tool collection available_tools: ToolCollection = Field( default_factory=lambda: ToolCollection( PythonExecute(), BrowserUseTool(), StrReplaceEditor(), AskHuman(), Terminate(), ) ) special_tool_names: list[str] = Field(default_factory=lambda: [Terminate().name]) browser_context_helper: Optional[BrowserContextHelper] = None # Track connected MCP servers connected_servers: Dict[str, str] = Field( default_factory=dict ) # server_id -> url/command _initialized: bool = False @model_validator(mode="after") def initialize_helper(self) -> "Manus": """Initialize basic components synchronously.""" self.browser_context_helper = BrowserContextHelper(self) return self @classmethod async def create(cls, **kwargs) -> "Manus": """Factory method to create and properly initialize a Manus instance.""" instance = cls(**kwargs) await instance.initialize_mcp_servers() instance._initialized = True return instance async def initialize_mcp_servers(self) -> None: """Initialize connections to configured MCP servers.""" for server_id, server_config in config.mcp_config.servers.items(): try: if server_config.type == "sse": if server_config.url: await self.connect_mcp_server(server_config.url, server_id) logger.info( f"Connected to MCP server {server_id} at {server_config.url}" ) elif server_config.type == "stdio": if server_config.command: await self.connect_mcp_server( server_config.command, server_id, use_stdio=True, stdio_args=server_config.args, ) logger.info( f"Connected to MCP server {server_id} using command {server_config.command}" ) except Exception as e: logger.error(f"Failed to connect to MCP server {server_id}: {e}") async def connect_mcp_server( self, server_url: str, server_id: str = "", use_stdio: bool = False, stdio_args: List[str] = None, ) -> None: """Connect to an MCP server and add its tools.""" if use_stdio: await self.mcp_clients.connect_stdio( server_url, stdio_args or [], server_id ) self.connected_servers[server_id or server_url] = server_url else: await self.mcp_clients.connect_sse(server_url, server_id) self.connected_servers[server_id or server_url] = server_url # Update available tools with only the new tools from this server new_tools = [ tool for tool in self.mcp_clients.tools if tool.server_id == server_id ] self.available_tools.add_tools(*new_tools) async def disconnect_mcp_server(self, server_id: str = "") -> None: """Disconnect from an MCP server and remove its tools.""" await self.mcp_clients.disconnect(server_id) if server_id: self.connected_servers.pop(server_id, None) else: self.connected_servers.clear() # Rebuild available tools without the disconnected server's tools base_tools = [ tool for tool in self.available_tools.tools if not isinstance(tool, MCPClientTool) ] self.available_tools = ToolCollection(*base_tools) self.available_tools.add_tools(*self.mcp_clients.tools) async def cleanup(self): """Clean up Manus agent resources.""" if self.browser_context_helper: await self.browser_context_helper.cleanup_browser() # Disconnect from all MCP servers only if we were initialized if self._initialized: await self.disconnect_mcp_server() self._initialized = False async def think(self) -> bool: """Process current state and decide next actions with appropriate context.""" if not self._initialized: await self.initialize_mcp_servers() self._initialized = True original_prompt = self.next_step_prompt recent_messages = self.memory.messages[-3:] if self.memory.messages else [] browser_in_use = any( tc.function.name == BrowserUseTool().name for msg in recent_messages if msg.tool_calls for tc in msg.tool_calls ) if browser_in_use: self.next_step_prompt = ( await self.browser_context_helper.format_next_step_prompt() ) result = await super().think() # Restore original prompt self.next_step_prompt = original_prompt return result ``` ## /app/agent/mcp.py ```py path="/app/agent/mcp.py" from typing import Any, Dict, List, Optional, Tuple from pydantic import Field from app.agent.toolcall import ToolCallAgent from app.logger import logger from app.prompt.mcp import MULTIMEDIA_RESPONSE_PROMPT, NEXT_STEP_PROMPT, SYSTEM_PROMPT from app.schema import AgentState, Message from app.tool.base import ToolResult from app.tool.mcp import MCPClients class MCPAgent(ToolCallAgent): """Agent for interacting with MCP (Model Context Protocol) servers. This agent connects to an MCP server using either SSE or stdio transport and makes the server's tools available through the agent's tool interface. """ name: str = "mcp_agent" description: str = "An agent that connects to an MCP server and uses its tools." system_prompt: str = SYSTEM_PROMPT next_step_prompt: str = NEXT_STEP_PROMPT # Initialize MCP tool collection mcp_clients: MCPClients = Field(default_factory=MCPClients) available_tools: MCPClients = None # Will be set in initialize() max_steps: int = 20 connection_type: str = "stdio" # "stdio" or "sse" # Track tool schemas to detect changes tool_schemas: Dict[str, Dict[str, Any]] = Field(default_factory=dict) _refresh_tools_interval: int = 5 # Refresh tools every N steps # Special tool names that should trigger termination special_tool_names: List[str] = Field(default_factory=lambda: ["terminate"]) async def initialize( self, connection_type: Optional[str] = None, server_url: Optional[str] = None, command: Optional[str] = None, args: Optional[List[str]] = None, ) -> None: """Initialize the MCP connection. Args: connection_type: Type of connection to use ("stdio" or "sse") server_url: URL of the MCP server (for SSE connection) command: Command to run (for stdio connection) args: Arguments for the command (for stdio connection) """ if connection_type: self.connection_type = connection_type # Connect to the MCP server based on connection type if self.connection_type == "sse": if not server_url: raise ValueError("Server URL is required for SSE connection") await self.mcp_clients.connect_sse(server_url=server_url) elif self.connection_type == "stdio": if not command: raise ValueError("Command is required for stdio connection") await self.mcp_clients.connect_stdio(command=command, args=args or []) else: raise ValueError(f"Unsupported connection type: {self.connection_type}") # Set available_tools to our MCP instance self.available_tools = self.mcp_clients # Store initial tool schemas await self._refresh_tools() # Add system message about available tools tool_names = list(self.mcp_clients.tool_map.keys()) tools_info = ", ".join(tool_names) # Add system prompt and available tools information self.memory.add_message( Message.system_message( f"{self.system_prompt}\n\nAvailable MCP tools: {tools_info}" ) ) async def _refresh_tools(self) -> Tuple[List[str], List[str]]: """Refresh the list of available tools from the MCP server. Returns: A tuple of (added_tools, removed_tools) """ if not self.mcp_clients.session: return [], [] # Get current tool schemas directly from the server response = await self.mcp_clients.session.list_tools() current_tools = {tool.name: tool.inputSchema for tool in response.tools} # Determine added, removed, and changed tools current_names = set(current_tools.keys()) previous_names = set(self.tool_schemas.keys()) added_tools = list(current_names - previous_names) removed_tools = list(previous_names - current_names) # Check for schema changes in existing tools changed_tools = [] for name in current_names.intersection(previous_names): if current_tools[name] != self.tool_schemas.get(name): changed_tools.append(name) # Update stored schemas self.tool_schemas = current_tools # Log and notify about changes if added_tools: logger.info(f"Added MCP tools: {added_tools}") self.memory.add_message( Message.system_message(f"New tools available: {', '.join(added_tools)}") ) if removed_tools: logger.info(f"Removed MCP tools: {removed_tools}") self.memory.add_message( Message.system_message( f"Tools no longer available: {', '.join(removed_tools)}" ) ) if changed_tools: logger.info(f"Changed MCP tools: {changed_tools}") return added_tools, removed_tools async def think(self) -> bool: """Process current state and decide next action.""" # Check MCP session and tools availability if not self.mcp_clients.session or not self.mcp_clients.tool_map: logger.info("MCP service is no longer available, ending interaction") self.state = AgentState.FINISHED return False # Refresh tools periodically if self.current_step % self._refresh_tools_interval == 0: await self._refresh_tools() # All tools removed indicates shutdown if not self.mcp_clients.tool_map: logger.info("MCP service has shut down, ending interaction") self.state = AgentState.FINISHED return False # Use the parent class's think method return await super().think() async def _handle_special_tool(self, name: str, result: Any, **kwargs) -> None: """Handle special tool execution and state changes""" # First process with parent handler await super()._handle_special_tool(name, result, **kwargs) # Handle multimedia responses if isinstance(result, ToolResult) and result.base64_image: self.memory.add_message( Message.system_message( MULTIMEDIA_RESPONSE_PROMPT.format(tool_name=name) ) ) def _should_finish_execution(self, name: str, **kwargs) -> bool: """Determine if tool execution should finish the agent""" # Terminate if the tool name is 'terminate' return name.lower() == "terminate" async def cleanup(self) -> None: """Clean up MCP connection when done.""" if self.mcp_clients.session: await self.mcp_clients.disconnect() logger.info("MCP connection closed") async def run(self, request: Optional[str] = None) -> str: """Run the agent with cleanup when done.""" try: result = await super().run(request) return result finally: # Ensure cleanup happens even if there's an error await self.cleanup() ``` ## /app/agent/react.py ```py path="/app/agent/react.py" from abc import ABC, abstractmethod from typing import Optional from pydantic import Field from app.agent.base import BaseAgent from app.llm import LLM from app.schema import AgentState, Memory class ReActAgent(BaseAgent, ABC): name: str description: Optional[str] = None system_prompt: Optional[str] = None next_step_prompt: Optional[str] = None llm: Optional[LLM] = Field(default_factory=LLM) memory: Memory = Field(default_factory=Memory) state: AgentState = AgentState.IDLE max_steps: int = 10 current_step: int = 0 @abstractmethod async def think(self) -> bool: """Process current state and decide next action""" @abstractmethod async def act(self) -> str: """Execute decided actions""" async def step(self) -> str: """Execute a single step: think and act.""" should_act = await self.think() if not should_act: return "Thinking complete - no action needed" return await self.act() ``` ## /app/agent/swe.py ```py path="/app/agent/swe.py" from typing import List from pydantic import Field from app.agent.toolcall import ToolCallAgent from app.prompt.swe import SYSTEM_PROMPT from app.tool import Bash, StrReplaceEditor, Terminate, ToolCollection class SWEAgent(ToolCallAgent): """An agent that implements the SWEAgent paradigm for executing code and natural conversations.""" name: str = "swe" description: str = "an autonomous AI programmer that interacts directly with the computer to solve tasks." system_prompt: str = SYSTEM_PROMPT next_step_prompt: str = "" available_tools: ToolCollection = ToolCollection( Bash(), StrReplaceEditor(), Terminate() ) special_tool_names: List[str] = Field(default_factory=lambda: [Terminate().name]) max_steps: int = 20 ``` ## /app/agent/toolcall.py ```py path="/app/agent/toolcall.py" import asyncio import json from typing import Any, List, Optional, Union from pydantic import Field from app.agent.react import ReActAgent from app.exceptions import TokenLimitExceeded from app.logger import logger from app.prompt.toolcall import NEXT_STEP_PROMPT, SYSTEM_PROMPT from app.schema import TOOL_CHOICE_TYPE, AgentState, Message, ToolCall, ToolChoice from app.tool import CreateChatCompletion, Terminate, ToolCollection TOOL_CALL_REQUIRED = "Tool calls required but none provided" class ToolCallAgent(ReActAgent): """Base agent class for handling tool/function calls with enhanced abstraction""" name: str = "toolcall" description: str = "an agent that can execute tool calls." system_prompt: str = SYSTEM_PROMPT next_step_prompt: str = NEXT_STEP_PROMPT available_tools: ToolCollection = ToolCollection( CreateChatCompletion(), Terminate() ) tool_choices: TOOL_CHOICE_TYPE = ToolChoice.AUTO # type: ignore special_tool_names: List[str] = Field(default_factory=lambda: [Terminate().name]) tool_calls: List[ToolCall] = Field(default_factory=list) _current_base64_image: Optional[str] = None max_steps: int = 30 max_observe: Optional[Union[int, bool]] = None async def think(self) -> bool: """Process current state and decide next actions using tools""" if self.next_step_prompt: user_msg = Message.user_message(self.next_step_prompt) self.messages += [user_msg] try: # Get response with tool options response = await self.llm.ask_tool( messages=self.messages, system_msgs=( [Message.system_message(self.system_prompt)] if self.system_prompt else None ), tools=self.available_tools.to_params(), tool_choice=self.tool_choices, ) except ValueError: raise except Exception as e: # Check if this is a RetryError containing TokenLimitExceeded if hasattr(e, "__cause__") and isinstance(e.__cause__, TokenLimitExceeded): token_limit_error = e.__cause__ logger.error( f"🚨 Token limit error (from RetryError): {token_limit_error}" ) self.memory.add_message( Message.assistant_message( f"Maximum token limit reached, cannot continue execution: {str(token_limit_error)}" ) ) self.state = AgentState.FINISHED return False raise self.tool_calls = tool_calls = ( response.tool_calls if response and response.tool_calls else [] ) content = response.content if response and response.content else "" # Log response info logger.info(f"✨ {self.name}'s thoughts: {content}") logger.info( f"🛠️ {self.name} selected {len(tool_calls) if tool_calls else 0} tools to use" ) if tool_calls: logger.info( f"🧰 Tools being prepared: {[call.function.name for call in tool_calls]}" ) logger.info(f"🔧 Tool arguments: {tool_calls[0].function.arguments}") try: if response is None: raise RuntimeError("No response received from the LLM") # Handle different tool_choices modes if self.tool_choices == ToolChoice.NONE: if tool_calls: logger.warning( f"🤔 Hmm, {self.name} tried to use tools when they weren't available!" ) if content: self.memory.add_message(Message.assistant_message(content)) return True return False # Create and add assistant message assistant_msg = ( Message.from_tool_calls(content=content, tool_calls=self.tool_calls) if self.tool_calls else Message.assistant_message(content) ) self.memory.add_message(assistant_msg) if self.tool_choices == ToolChoice.REQUIRED and not self.tool_calls: return True # Will be handled in act() # For 'auto' mode, continue with content if no commands but content exists if self.tool_choices == ToolChoice.AUTO and not self.tool_calls: return bool(content) return bool(self.tool_calls) except Exception as e: logger.error(f"🚨 Oops! The {self.name}'s thinking process hit a snag: {e}") self.memory.add_message( Message.assistant_message( f"Error encountered while processing: {str(e)}" ) ) return False async def act(self) -> str: """Execute tool calls and handle their results""" if not self.tool_calls: if self.tool_choices == ToolChoice.REQUIRED: raise ValueError(TOOL_CALL_REQUIRED) # Return last message content if no tool calls return self.messages[-1].content or "No content or commands to execute" results = [] for command in self.tool_calls: # Reset base64_image for each tool call self._current_base64_image = None result = await self.execute_tool(command) if self.max_observe: result = result[: self.max_observe] logger.info( f"🎯 Tool '{command.function.name}' completed its mission! Result: {result}" ) # Add tool response to memory tool_msg = Message.tool_message( content=result, tool_call_id=command.id, name=command.function.name, base64_image=self._current_base64_image, ) self.memory.add_message(tool_msg) results.append(result) return "\n\n".join(results) async def execute_tool(self, command: ToolCall) -> str: """Execute a single tool call with robust error handling""" if not command or not command.function or not command.function.name: return "Error: Invalid command format" name = command.function.name if name not in self.available_tools.tool_map: return f"Error: Unknown tool '{name}'" try: # Parse arguments args = json.loads(command.function.arguments or "{}") # Execute the tool logger.info(f"🔧 Activating tool: '{name}'...") result = await self.available_tools.execute(name=name, tool_input=args) # Handle special tools await self._handle_special_tool(name=name, result=result) # Check if result is a ToolResult with base64_image if hasattr(result, "base64_image") and result.base64_image: # Store the base64_image for later use in tool_message self._current_base64_image = result.base64_image # Format result for display (standard case) observation = ( f"Observed output of cmd `{name}` executed:\n{str(result)}" if result else f"Cmd `{name}` completed with no output" ) return observation except json.JSONDecodeError: error_msg = f"Error parsing arguments for {name}: Invalid JSON format" logger.error( f"📝 Oops! The arguments for '{name}' don't make sense - invalid JSON, arguments:{command.function.arguments}" ) return f"Error: {error_msg}" except Exception as e: error_msg = f"⚠️ Tool '{name}' encountered a problem: {str(e)}" logger.exception(error_msg) return f"Error: {error_msg}" async def _handle_special_tool(self, name: str, result: Any, **kwargs): """Handle special tool execution and state changes""" if not self._is_special_tool(name): return if self._should_finish_execution(name=name, result=result, **kwargs): # Set agent state to finished logger.info(f"🏁 Special tool '{name}' has completed the task!") self.state = AgentState.FINISHED @staticmethod def _should_finish_execution(**kwargs) -> bool: """Determine if tool execution should finish the agent""" return True def _is_special_tool(self, name: str) -> bool: """Check if tool name is in special tools list""" return name.lower() in [n.lower() for n in self.special_tool_names] async def cleanup(self): """Clean up resources used by the agent's tools.""" logger.info(f"🧹 Cleaning up resources for agent '{self.name}'...") for tool_name, tool_instance in self.available_tools.tool_map.items(): if hasattr(tool_instance, "cleanup") and asyncio.iscoroutinefunction( tool_instance.cleanup ): try: logger.debug(f"🧼 Cleaning up tool: {tool_name}") await tool_instance.cleanup() except Exception as e: logger.error( f"🚨 Error cleaning up tool '{tool_name}': {e}", exc_info=True ) logger.info(f"✨ Cleanup complete for agent '{self.name}'.") async def run(self, request: Optional[str] = None) -> str: """Run the agent with cleanup when done.""" try: return await super().run(request) finally: await self.cleanup() ``` ## /app/bedrock.py ```py path="/app/bedrock.py" import json import sys import time import uuid from datetime import datetime from typing import Dict, List, Literal, Optional import boto3 # Global variables to track the current tool use ID across function calls # Tmp solution CURRENT_TOOLUSE_ID = None # Class to handle OpenAI-style response formatting class OpenAIResponse: def __init__(self, data): # Recursively convert nested dicts and lists to OpenAIResponse objects for key, value in data.items(): if isinstance(value, dict): value = OpenAIResponse(value) elif isinstance(value, list): value = [ OpenAIResponse(item) if isinstance(item, dict) else item for item in value ] setattr(self, key, value) def model_dump(self, *args, **kwargs): # Convert object to dict and add timestamp data = self.__dict__ data["created_at"] = datetime.now().isoformat() return data # Main client class for interacting with Amazon Bedrock class BedrockClient: def __init__(self): # Initialize Bedrock client, you need to configure AWS env first try: self.client = boto3.client("bedrock-runtime") self.chat = Chat(self.client) except Exception as e: print(f"Error initializing Bedrock client: {e}") sys.exit(1) # Chat interface class class Chat: def __init__(self, client): self.completions = ChatCompletions(client) # Core class handling chat completions functionality class ChatCompletions: def __init__(self, client): self.client = client def _convert_openai_tools_to_bedrock_format(self, tools): # Convert OpenAI function calling format to Bedrock tool format bedrock_tools = [] for tool in tools: if tool.get("type") == "function": function = tool.get("function", {}) bedrock_tool = { "toolSpec": { "name": function.get("name", ""), "description": function.get("description", ""), "inputSchema": { "json": { "type": "object", "properties": function.get("parameters", {}).get( "properties", {} ), "required": function.get("parameters", {}).get( "required", [] ), } }, } } bedrock_tools.append(bedrock_tool) return bedrock_tools def _convert_openai_messages_to_bedrock_format(self, messages): # Convert OpenAI message format to Bedrock message format bedrock_messages = [] system_prompt = [] for message in messages: if message.get("role") == "system": system_prompt = [{"text": message.get("content")}] elif message.get("role") == "user": bedrock_message = { "role": message.get("role", "user"), "content": [{"text": message.get("content")}], } bedrock_messages.append(bedrock_message) elif message.get("role") == "assistant": bedrock_message = { "role": "assistant", "content": [{"text": message.get("content")}], } openai_tool_calls = message.get("tool_calls", []) if openai_tool_calls: bedrock_tool_use = { "toolUseId": openai_tool_calls[0]["id"], "name": openai_tool_calls[0]["function"]["name"], "input": json.loads( openai_tool_calls[0]["function"]["arguments"] ), } bedrock_message["content"].append({"toolUse": bedrock_tool_use}) global CURRENT_TOOLUSE_ID CURRENT_TOOLUSE_ID = openai_tool_calls[0]["id"] bedrock_messages.append(bedrock_message) elif message.get("role") == "tool": bedrock_message = { "role": "user", "content": [ { "toolResult": { "toolUseId": CURRENT_TOOLUSE_ID, "content": [{"text": message.get("content")}], } } ], } bedrock_messages.append(bedrock_message) else: raise ValueError(f"Invalid role: {message.get('role')}") return system_prompt, bedrock_messages def _convert_bedrock_response_to_openai_format(self, bedrock_response): # Convert Bedrock response format to OpenAI format content = "" if bedrock_response.get("output", {}).get("message", {}).get("content"): content_array = bedrock_response["output"]["message"]["content"] content = "".join(item.get("text", "") for item in content_array) if content == "": content = "." # Handle tool calls in response openai_tool_calls = [] if bedrock_response.get("output", {}).get("message", {}).get("content"): for content_item in bedrock_response["output"]["message"]["content"]: if content_item.get("toolUse"): bedrock_tool_use = content_item["toolUse"] global CURRENT_TOOLUSE_ID CURRENT_TOOLUSE_ID = bedrock_tool_use["toolUseId"] openai_tool_call = { "id": CURRENT_TOOLUSE_ID, "type": "function", "function": { "name": bedrock_tool_use["name"], "arguments": json.dumps(bedrock_tool_use["input"]), }, } openai_tool_calls.append(openai_tool_call) # Construct final OpenAI format response openai_format = { "id": f"chatcmpl-{uuid.uuid4()}", "created": int(time.time()), "object": "chat.completion", "system_fingerprint": None, "choices": [ { "finish_reason": bedrock_response.get("stopReason", "end_turn"), "index": 0, "message": { "content": content, "role": bedrock_response.get("output", {}) .get("message", {}) .get("role", "assistant"), "tool_calls": openai_tool_calls if openai_tool_calls != [] else None, "function_call": None, }, } ], "usage": { "completion_tokens": bedrock_response.get("usage", {}).get( "outputTokens", 0 ), "prompt_tokens": bedrock_response.get("usage", {}).get( "inputTokens", 0 ), "total_tokens": bedrock_response.get("usage", {}).get("totalTokens", 0), }, } return OpenAIResponse(openai_format) async def _invoke_bedrock( self, model: str, messages: List[Dict[str, str]], max_tokens: int, temperature: float, tools: Optional[List[dict]] = None, tool_choice: Literal["none", "auto", "required"] = "auto", **kwargs, ) -> OpenAIResponse: # Non-streaming invocation of Bedrock model ( system_prompt, bedrock_messages, ) = self._convert_openai_messages_to_bedrock_format(messages) response = self.client.converse( modelId=model, system=system_prompt, messages=bedrock_messages, inferenceConfig={"temperature": temperature, "maxTokens": max_tokens}, toolConfig={"tools": tools} if tools else None, ) openai_response = self._convert_bedrock_response_to_openai_format(response) return openai_response async def _invoke_bedrock_stream( self, model: str, messages: List[Dict[str, str]], max_tokens: int, temperature: float, tools: Optional[List[dict]] = None, tool_choice: Literal["none", "auto", "required"] = "auto", **kwargs, ) -> OpenAIResponse: # Streaming invocation of Bedrock model ( system_prompt, bedrock_messages, ) = self._convert_openai_messages_to_bedrock_format(messages) response = self.client.converse_stream( modelId=model, system=system_prompt, messages=bedrock_messages, inferenceConfig={"temperature": temperature, "maxTokens": max_tokens}, toolConfig={"tools": tools} if tools else None, ) # Initialize response structure bedrock_response = { "output": {"message": {"role": "", "content": []}}, "stopReason": "", "usage": {}, "metrics": {}, } bedrock_response_text = "" bedrock_response_tool_input = "" # Process streaming response stream = response.get("stream") if stream: for event in stream: if event.get("messageStart", {}).get("role"): bedrock_response["output"]["message"]["role"] = event[ "messageStart" ]["role"] if event.get("contentBlockDelta", {}).get("delta", {}).get("text"): bedrock_response_text += event["contentBlockDelta"]["delta"]["text"] print( event["contentBlockDelta"]["delta"]["text"], end="", flush=True ) if event.get("contentBlockStop", {}).get("contentBlockIndex") == 0: bedrock_response["output"]["message"]["content"].append( {"text": bedrock_response_text} ) if event.get("contentBlockStart", {}).get("start", {}).get("toolUse"): bedrock_tool_use = event["contentBlockStart"]["start"]["toolUse"] tool_use = { "toolUseId": bedrock_tool_use["toolUseId"], "name": bedrock_tool_use["name"], } bedrock_response["output"]["message"]["content"].append( {"toolUse": tool_use} ) global CURRENT_TOOLUSE_ID CURRENT_TOOLUSE_ID = bedrock_tool_use["toolUseId"] if event.get("contentBlockDelta", {}).get("delta", {}).get("toolUse"): bedrock_response_tool_input += event["contentBlockDelta"]["delta"][ "toolUse" ]["input"] print( event["contentBlockDelta"]["delta"]["toolUse"]["input"], end="", flush=True, ) if event.get("contentBlockStop", {}).get("contentBlockIndex") == 1: bedrock_response["output"]["message"]["content"][1]["toolUse"][ "input" ] = json.loads(bedrock_response_tool_input) print() openai_response = self._convert_bedrock_response_to_openai_format( bedrock_response ) return openai_response def create( self, model: str, messages: List[Dict[str, str]], max_tokens: int, temperature: float, stream: Optional[bool] = True, tools: Optional[List[dict]] = None, tool_choice: Literal["none", "auto", "required"] = "auto", **kwargs, ) -> OpenAIResponse: # Main entry point for chat completion bedrock_tools = [] if tools is not None: bedrock_tools = self._convert_openai_tools_to_bedrock_format(tools) if stream: return self._invoke_bedrock_stream( model, messages, max_tokens, temperature, bedrock_tools, tool_choice, **kwargs, ) else: return self._invoke_bedrock( model, messages, max_tokens, temperature, bedrock_tools, tool_choice, **kwargs, ) ``` ## /app/config.py ```py path="/app/config.py" import json import threading import tomllib from pathlib import Path from typing import Dict, List, Optional from pydantic import BaseModel, Field def get_project_root() -> Path: """Get the project root directory""" return Path(__file__).resolve().parent.parent PROJECT_ROOT = get_project_root() WORKSPACE_ROOT = PROJECT_ROOT / "workspace" class LLMSettings(BaseModel): model: str = Field(..., description="Model name") base_url: str = Field(..., description="API base URL") api_key: str = Field(..., description="API key") max_tokens: int = Field(4096, description="Maximum number of tokens per request") max_input_tokens: Optional[int] = Field( None, description="Maximum input tokens to use across all requests (None for unlimited)", ) temperature: float = Field(1.0, description="Sampling temperature") api_type: str = Field(..., description="Azure, Openai, or Ollama") api_version: str = Field(..., description="Azure Openai version if AzureOpenai") class ProxySettings(BaseModel): server: str = Field(None, description="Proxy server address") username: Optional[str] = Field(None, description="Proxy username") password: Optional[str] = Field(None, description="Proxy password") class SearchSettings(BaseModel): engine: str = Field(default="Google", description="Search engine the llm to use") fallback_engines: List[str] = Field( default_factory=lambda: ["DuckDuckGo", "Baidu", "Bing"], description="Fallback search engines to try if the primary engine fails", ) retry_delay: int = Field( default=60, description="Seconds to wait before retrying all engines again after they all fail", ) max_retries: int = Field( default=3, description="Maximum number of times to retry all engines when all fail", ) lang: str = Field( default="en", description="Language code for search results (e.g., en, zh, fr)", ) country: str = Field( default="us", description="Country code for search results (e.g., us, cn, uk)", ) class BrowserSettings(BaseModel): headless: bool = Field(False, description="Whether to run browser in headless mode") disable_security: bool = Field( True, description="Disable browser security features" ) extra_chromium_args: List[str] = Field( default_factory=list, description="Extra arguments to pass to the browser" ) chrome_instance_path: Optional[str] = Field( None, description="Path to a Chrome instance to use" ) wss_url: Optional[str] = Field( None, description="Connect to a browser instance via WebSocket" ) cdp_url: Optional[str] = Field( None, description="Connect to a browser instance via CDP" ) proxy: Optional[ProxySettings] = Field( None, description="Proxy settings for the browser" ) max_content_length: int = Field( 2000, description="Maximum length for content retrieval operations" ) class SandboxSettings(BaseModel): """Configuration for the execution sandbox""" use_sandbox: bool = Field(False, description="Whether to use the sandbox") image: str = Field("python:3.12-slim", description="Base image") work_dir: str = Field("/workspace", description="Container working directory") memory_limit: str = Field("512m", description="Memory limit") cpu_limit: float = Field(1.0, description="CPU limit") timeout: int = Field(300, description="Default command timeout (seconds)") network_enabled: bool = Field( False, description="Whether network access is allowed" ) class MCPServerConfig(BaseModel): """Configuration for a single MCP server""" type: str = Field(..., description="Server connection type (sse or stdio)") url: Optional[str] = Field(None, description="Server URL for SSE connections") command: Optional[str] = Field(None, description="Command for stdio connections") args: List[str] = Field( default_factory=list, description="Arguments for stdio command" ) class MCPSettings(BaseModel): """Configuration for MCP (Model Context Protocol)""" server_reference: str = Field( "app.mcp.server", description="Module reference for the MCP server" ) servers: Dict[str, MCPServerConfig] = Field( default_factory=dict, description="MCP server configurations" ) @classmethod def load_server_config(cls) -> Dict[str, MCPServerConfig]: """Load MCP server configuration from JSON file""" config_path = PROJECT_ROOT / "config" / "mcp.json" try: config_file = config_path if config_path.exists() else None if not config_file: return {} with config_file.open() as f: data = json.load(f) servers = {} for server_id, server_config in data.get("mcpServers", {}).items(): servers[server_id] = MCPServerConfig( type=server_config["type"], url=server_config.get("url"), command=server_config.get("command"), args=server_config.get("args", []), ) return servers except Exception as e: raise ValueError(f"Failed to load MCP server config: {e}") class AppConfig(BaseModel): llm: Dict[str, LLMSettings] sandbox: Optional[SandboxSettings] = Field( None, description="Sandbox configuration" ) browser_config: Optional[BrowserSettings] = Field( None, description="Browser configuration" ) search_config: Optional[SearchSettings] = Field( None, description="Search configuration" ) mcp_config: Optional[MCPSettings] = Field(None, description="MCP configuration") class Config: arbitrary_types_allowed = True class Config: _instance = None _lock = threading.Lock() _initialized = False def __new__(cls): if cls._instance is None: with cls._lock: if cls._instance is None: cls._instance = super().__new__(cls) return cls._instance def __init__(self): if not self._initialized: with self._lock: if not self._initialized: self._config = None self._load_initial_config() self._initialized = True @staticmethod def _get_config_path() -> Path: root = PROJECT_ROOT config_path = root / "config" / "config.toml" if config_path.exists(): return config_path example_path = root / "config" / "config.example.toml" if example_path.exists(): return example_path raise FileNotFoundError("No configuration file found in config directory") def _load_config(self) -> dict: config_path = self._get_config_path() with config_path.open("rb") as f: return tomllib.load(f) def _load_initial_config(self): raw_config = self._load_config() base_llm = raw_config.get("llm", {}) llm_overrides = { k: v for k, v in raw_config.get("llm", {}).items() if isinstance(v, dict) } default_settings = { "model": base_llm.get("model"), "base_url": base_llm.get("base_url"), "api_key": base_llm.get("api_key"), "max_tokens": base_llm.get("max_tokens", 4096), "max_input_tokens": base_llm.get("max_input_tokens"), "temperature": base_llm.get("temperature", 1.0), "api_type": base_llm.get("api_type", ""), "api_version": base_llm.get("api_version", ""), } # handle browser config. browser_config = raw_config.get("browser", {}) browser_settings = None if browser_config: # handle proxy settings. proxy_config = browser_config.get("proxy", {}) proxy_settings = None if proxy_config and proxy_config.get("server"): proxy_settings = ProxySettings( **{ k: v for k, v in proxy_config.items() if k in ["server", "username", "password"] and v } ) # filter valid browser config parameters. valid_browser_params = { k: v for k, v in browser_config.items() if k in BrowserSettings.__annotations__ and v is not None } # if there is proxy settings, add it to the parameters. if proxy_settings: valid_browser_params["proxy"] = proxy_settings # only create BrowserSettings when there are valid parameters. if valid_browser_params: browser_settings = BrowserSettings(**valid_browser_params) search_config = raw_config.get("search", {}) search_settings = None if search_config: search_settings = SearchSettings(**search_config) sandbox_config = raw_config.get("sandbox", {}) if sandbox_config: sandbox_settings = SandboxSettings(**sandbox_config) else: sandbox_settings = SandboxSettings() mcp_config = raw_config.get("mcp", {}) mcp_settings = None if mcp_config: # Load server configurations from JSON mcp_config["servers"] = MCPSettings.load_server_config() mcp_settings = MCPSettings(**mcp_config) else: mcp_settings = MCPSettings(servers=MCPSettings.load_server_config()) config_dict = { "llm": { "default": default_settings, **{ name: {**default_settings, **override_config} for name, override_config in llm_overrides.items() }, }, "sandbox": sandbox_settings, "browser_config": browser_settings, "search_config": search_settings, "mcp_config": mcp_settings, } self._config = AppConfig(**config_dict) @property def llm(self) -> Dict[str, LLMSettings]: return self._config.llm @property def sandbox(self) -> SandboxSettings: return self._config.sandbox @property def browser_config(self) -> Optional[BrowserSettings]: return self._config.browser_config @property def search_config(self) -> Optional[SearchSettings]: return self._config.search_config @property def mcp_config(self) -> MCPSettings: """Get the MCP configuration""" return self._config.mcp_config @property def workspace_root(self) -> Path: """Get the workspace root directory""" return WORKSPACE_ROOT @property def root_path(self) -> Path: """Get the root path of the application""" return PROJECT_ROOT config = Config() ``` ## /app/exceptions.py ```py path="/app/exceptions.py" class ToolError(Exception): """Raised when a tool encounters an error.""" def __init__(self, message): self.message = message class OpenManusError(Exception): """Base exception for all OpenManus errors""" class TokenLimitExceeded(OpenManusError): """Exception raised when the token limit is exceeded""" ``` ## /app/flow/__init__.py ```py path="/app/flow/__init__.py" ``` ## /app/flow/base.py ```py path="/app/flow/base.py" from abc import ABC, abstractmethod from typing import Dict, List, Optional, Union from pydantic import BaseModel from app.agent.base import BaseAgent class BaseFlow(BaseModel, ABC): """Base class for execution flows supporting multiple agents""" agents: Dict[str, BaseAgent] tools: Optional[List] = None primary_agent_key: Optional[str] = None class Config: arbitrary_types_allowed = True def __init__( self, agents: Union[BaseAgent, List[BaseAgent], Dict[str, BaseAgent]], **data ): # Handle different ways of providing agents if isinstance(agents, BaseAgent): agents_dict = {"default": agents} elif isinstance(agents, list): agents_dict = {f"agent_{i}": agent for i, agent in enumerate(agents)} else: agents_dict = agents # If primary agent not specified, use first agent primary_key = data.get("primary_agent_key") if not primary_key and agents_dict: primary_key = next(iter(agents_dict)) data["primary_agent_key"] = primary_key # Set the agents dictionary data["agents"] = agents_dict # Initialize using BaseModel's init super().__init__(**data) @property def primary_agent(self) -> Optional[BaseAgent]: """Get the primary agent for the flow""" return self.agents.get(self.primary_agent_key) def get_agent(self, key: str) -> Optional[BaseAgent]: """Get a specific agent by key""" return self.agents.get(key) def add_agent(self, key: str, agent: BaseAgent) -> None: """Add a new agent to the flow""" self.agents[key] = agent @abstractmethod async def execute(self, input_text: str) -> str: """Execute the flow with given input""" ``` ## /app/flow/flow_factory.py ```py path="/app/flow/flow_factory.py" from enum import Enum from typing import Dict, List, Union from app.agent.base import BaseAgent from app.flow.base import BaseFlow from app.flow.planning import PlanningFlow class FlowType(str, Enum): PLANNING = "planning" class FlowFactory: """Factory for creating different types of flows with support for multiple agents""" @staticmethod def create_flow( flow_type: FlowType, agents: Union[BaseAgent, List[BaseAgent], Dict[str, BaseAgent]], **kwargs, ) -> BaseFlow: flows = { FlowType.PLANNING: PlanningFlow, } flow_class = flows.get(flow_type) if not flow_class: raise ValueError(f"Unknown flow type: {flow_type}") return flow_class(agents, **kwargs) ``` ## /app/flow/planning.py ```py path="/app/flow/planning.py" import json import time from enum import Enum from typing import Dict, List, Optional, Union from pydantic import Field from app.agent.base import BaseAgent from app.flow.base import BaseFlow from app.llm import LLM from app.logger import logger from app.schema import AgentState, Message, ToolChoice from app.tool import PlanningTool class PlanStepStatus(str, Enum): """Enum class defining possible statuses of a plan step""" NOT_STARTED = "not_started" IN_PROGRESS = "in_progress" COMPLETED = "completed" BLOCKED = "blocked" @classmethod def get_all_statuses(cls) -> list[str]: """Return a list of all possible step status values""" return [status.value for status in cls] @classmethod def get_active_statuses(cls) -> list[str]: """Return a list of values representing active statuses (not started or in progress)""" return [cls.NOT_STARTED.value, cls.IN_PROGRESS.value] @classmethod def get_status_marks(cls) -> Dict[str, str]: """Return a mapping of statuses to their marker symbols""" return { cls.COMPLETED.value: "[✓]", cls.IN_PROGRESS.value: "[→]", cls.BLOCKED.value: "[!]", cls.NOT_STARTED.value: "[ ]", } class PlanningFlow(BaseFlow): """A flow that manages planning and execution of tasks using agents.""" llm: LLM = Field(default_factory=lambda: LLM()) planning_tool: PlanningTool = Field(default_factory=PlanningTool) executor_keys: List[str] = Field(default_factory=list) active_plan_id: str = Field(default_factory=lambda: f"plan_{int(time.time())}") current_step_index: Optional[int] = None def __init__( self, agents: Union[BaseAgent, List[BaseAgent], Dict[str, BaseAgent]], **data ): # Set executor keys before super().__init__ if "executors" in data: data["executor_keys"] = data.pop("executors") # Set plan ID if provided if "plan_id" in data: data["active_plan_id"] = data.pop("plan_id") # Initialize the planning tool if not provided if "planning_tool" not in data: planning_tool = PlanningTool() data["planning_tool"] = planning_tool # Call parent's init with the processed data super().__init__(agents, **data) # Set executor_keys to all agent keys if not specified if not self.executor_keys: self.executor_keys = list(self.agents.keys()) def get_executor(self, step_type: Optional[str] = None) -> BaseAgent: """ Get an appropriate executor agent for the current step. Can be extended to select agents based on step type/requirements. """ # If step type is provided and matches an agent key, use that agent if step_type and step_type in self.agents: return self.agents[step_type] # Otherwise use the first available executor or fall back to primary agent for key in self.executor_keys: if key in self.agents: return self.agents[key] # Fallback to primary agent return self.primary_agent async def execute(self, input_text: str) -> str: """Execute the planning flow with agents.""" try: if not self.primary_agent: raise ValueError("No primary agent available") # Create initial plan if input provided if input_text: await self._create_initial_plan(input_text) # Verify plan was created successfully if self.active_plan_id not in self.planning_tool.plans: logger.error( f"Plan creation failed. Plan ID {self.active_plan_id} not found in planning tool." ) return f"Failed to create plan for: {input_text}" result = "" while True: # Get current step to execute self.current_step_index, step_info = await self._get_current_step_info() # Exit if no more steps or plan completed if self.current_step_index is None: result += await self._finalize_plan() break # Execute current step with appropriate agent step_type = step_info.get("type") if step_info else None executor = self.get_executor(step_type) step_result = await self._execute_step(executor, step_info) result += step_result + "\n" # Check if agent wants to terminate if hasattr(executor, "state") and executor.state == AgentState.FINISHED: break return result except Exception as e: logger.error(f"Error in PlanningFlow: {str(e)}") return f"Execution failed: {str(e)}" async def _create_initial_plan(self, request: str) -> None: """Create an initial plan based on the request using the flow's LLM and PlanningTool.""" logger.info(f"Creating initial plan with ID: {self.active_plan_id}") # Create a system message for plan creation system_message = Message.system_message( "You are a planning assistant. Create a concise, actionable plan with clear steps. " "Focus on key milestones rather than detailed sub-steps. " "Optimize for clarity and efficiency." ) # Create a user message with the request user_message = Message.user_message( f"Create a reasonable plan with clear steps to accomplish the task: {request}" ) # Call LLM with PlanningTool response = await self.llm.ask_tool( messages=[user_message], system_msgs=[system_message], tools=[self.planning_tool.to_param()], tool_choice=ToolChoice.AUTO, ) # Process tool calls if present if response.tool_calls: for tool_call in response.tool_calls: if tool_call.function.name == "planning": # Parse the arguments args = tool_call.function.arguments if isinstance(args, str): try: args = json.loads(args) except json.JSONDecodeError: logger.error(f"Failed to parse tool arguments: {args}") continue # Ensure plan_id is set correctly and execute the tool args["plan_id"] = self.active_plan_id # Execute the tool via ToolCollection instead of directly result = await self.planning_tool.execute(**args) logger.info(f"Plan creation result: {str(result)}") return # If execution reached here, create a default plan logger.warning("Creating default plan") # Create default plan using the ToolCollection await self.planning_tool.execute( **{ "command": "create", "plan_id": self.active_plan_id, "title": f"Plan for: {request[:50]}{'...' if len(request) > 50 else ''}", "steps": ["Analyze request", "Execute task", "Verify results"], } ) async def _get_current_step_info(self) -> tuple[Optional[int], Optional[dict]]: """ Parse the current plan to identify the first non-completed step's index and info. Returns (None, None) if no active step is found. """ if ( not self.active_plan_id or self.active_plan_id not in self.planning_tool.plans ): logger.error(f"Plan with ID {self.active_plan_id} not found") return None, None try: # Direct access to plan data from planning tool storage plan_data = self.planning_tool.plans[self.active_plan_id] steps = plan_data.get("steps", []) step_statuses = plan_data.get("step_statuses", []) # Find first non-completed step for i, step in enumerate(steps): if i >= len(step_statuses): status = PlanStepStatus.NOT_STARTED.value else: status = step_statuses[i] if status in PlanStepStatus.get_active_statuses(): # Extract step type/category if available step_info = {"text": step} # Try to extract step type from the text (e.g., [SEARCH] or [CODE]) import re type_match = re.search(r"\[([A-Z_]+)\]", step) if type_match: step_info["type"] = type_match.group(1).lower() # Mark current step as in_progress try: await self.planning_tool.execute( command="mark_step", plan_id=self.active_plan_id, step_index=i, step_status=PlanStepStatus.IN_PROGRESS.value, ) except Exception as e: logger.warning(f"Error marking step as in_progress: {e}") # Update step status directly if needed if i < len(step_statuses): step_statuses[i] = PlanStepStatus.IN_PROGRESS.value else: while len(step_statuses) < i: step_statuses.append(PlanStepStatus.NOT_STARTED.value) step_statuses.append(PlanStepStatus.IN_PROGRESS.value) plan_data["step_statuses"] = step_statuses return i, step_info return None, None # No active step found except Exception as e: logger.warning(f"Error finding current step index: {e}") return None, None async def _execute_step(self, executor: BaseAgent, step_info: dict) -> str: """Execute the current step with the specified agent using agent.run().""" # Prepare context for the agent with current plan status plan_status = await self._get_plan_text() step_text = step_info.get("text", f"Step {self.current_step_index}") # Create a prompt for the agent to execute the current step step_prompt = f""" CURRENT PLAN STATUS: {plan_status} YOUR CURRENT TASK: You are now working on step {self.current_step_index}: "{step_text}" Please execute this step using the appropriate tools. When you're done, provide a summary of what you accomplished. """ # Use agent.run() to execute the step try: step_result = await executor.run(step_prompt) # Mark the step as completed after successful execution await self._mark_step_completed() return step_result except Exception as e: logger.error(f"Error executing step {self.current_step_index}: {e}") return f"Error executing step {self.current_step_index}: {str(e)}" async def _mark_step_completed(self) -> None: """Mark the current step as completed.""" if self.current_step_index is None: return try: # Mark the step as completed await self.planning_tool.execute( command="mark_step", plan_id=self.active_plan_id, step_index=self.current_step_index, step_status=PlanStepStatus.COMPLETED.value, ) logger.info( f"Marked step {self.current_step_index} as completed in plan {self.active_plan_id}" ) except Exception as e: logger.warning(f"Failed to update plan status: {e}") # Update step status directly in planning tool storage if self.active_plan_id in self.planning_tool.plans: plan_data = self.planning_tool.plans[self.active_plan_id] step_statuses = plan_data.get("step_statuses", []) # Ensure the step_statuses list is long enough while len(step_statuses) <= self.current_step_index: step_statuses.append(PlanStepStatus.NOT_STARTED.value) # Update the status step_statuses[self.current_step_index] = PlanStepStatus.COMPLETED.value plan_data["step_statuses"] = step_statuses async def _get_plan_text(self) -> str: """Get the current plan as formatted text.""" try: result = await self.planning_tool.execute( command="get", plan_id=self.active_plan_id ) return result.output if hasattr(result, "output") else str(result) except Exception as e: logger.error(f"Error getting plan: {e}") return self._generate_plan_text_from_storage() def _generate_plan_text_from_storage(self) -> str: """Generate plan text directly from storage if the planning tool fails.""" try: if self.active_plan_id not in self.planning_tool.plans: return f"Error: Plan with ID {self.active_plan_id} not found" plan_data = self.planning_tool.plans[self.active_plan_id] title = plan_data.get("title", "Untitled Plan") steps = plan_data.get("steps", []) step_statuses = plan_data.get("step_statuses", []) step_notes = plan_data.get("step_notes", []) # Ensure step_statuses and step_notes match the number of steps while len(step_statuses) < len(steps): step_statuses.append(PlanStepStatus.NOT_STARTED.value) while len(step_notes) < len(steps): step_notes.append("") # Count steps by status status_counts = {status: 0 for status in PlanStepStatus.get_all_statuses()} for status in step_statuses: if status in status_counts: status_counts[status] += 1 completed = status_counts[PlanStepStatus.COMPLETED.value] total = len(steps) progress = (completed / total) * 100 if total > 0 else 0 plan_text = f"Plan: {title} (ID: {self.active_plan_id})\n" plan_text += "=" * len(plan_text) + "\n\n" plan_text += ( f"Progress: {completed}/{total} steps completed ({progress:.1f}%)\n" ) plan_text += f"Status: {status_counts[PlanStepStatus.COMPLETED.value]} completed, {status_counts[PlanStepStatus.IN_PROGRESS.value]} in progress, " plan_text += f"{status_counts[PlanStepStatus.BLOCKED.value]} blocked, {status_counts[PlanStepStatus.NOT_STARTED.value]} not started\n\n" plan_text += "Steps:\n" status_marks = PlanStepStatus.get_status_marks() for i, (step, status, notes) in enumerate( zip(steps, step_statuses, step_notes) ): # Use status marks to indicate step status status_mark = status_marks.get( status, status_marks[PlanStepStatus.NOT_STARTED.value] ) plan_text += f"{i}. {status_mark} {step}\n" if notes: plan_text += f" Notes: {notes}\n" return plan_text except Exception as e: logger.error(f"Error generating plan text from storage: {e}") return f"Error: Unable to retrieve plan with ID {self.active_plan_id}" async def _finalize_plan(self) -> str: """Finalize the plan and provide a summary using the flow's LLM directly.""" plan_text = await self._get_plan_text() # Create a summary using the flow's LLM directly try: system_message = Message.system_message( "You are a planning assistant. Your task is to summarize the completed plan." ) user_message = Message.user_message( f"The plan has been completed. Here is the final plan status:\n\n{plan_text}\n\nPlease provide a summary of what was accomplished and any final thoughts." ) response = await self.llm.ask( messages=[user_message], system_msgs=[system_message] ) return f"Plan completed:\n\n{response}" except Exception as e: logger.error(f"Error finalizing plan with LLM: {e}") # Fallback to using an agent for the summary try: agent = self.primary_agent summary_prompt = f""" The plan has been completed. Here is the final plan status: {plan_text} Please provide a summary of what was accomplished and any final thoughts. """ summary = await agent.run(summary_prompt) return f"Plan completed:\n\n{summary}" except Exception as e2: logger.error(f"Error finalizing plan with agent: {e2}") return "Plan completed. Error generating summary." ``` ## /app/llm.py ```py path="/app/llm.py" import math from typing import Dict, List, Optional, Union import tiktoken from openai import ( APIError, AsyncAzureOpenAI, AsyncOpenAI, AuthenticationError, OpenAIError, RateLimitError, ) from openai.types.chat import ChatCompletion, ChatCompletionMessage from tenacity import ( retry, retry_if_exception_type, stop_after_attempt, wait_random_exponential, ) from app.bedrock import BedrockClient from app.config import LLMSettings, config from app.exceptions import TokenLimitExceeded from app.logger import logger # Assuming a logger is set up in your app from app.schema import ( ROLE_VALUES, TOOL_CHOICE_TYPE, TOOL_CHOICE_VALUES, Message, ToolChoice, ) REASONING_MODELS = ["o1", "o3-mini"] MULTIMODAL_MODELS = [ "gpt-4-vision-preview", "gpt-4o", "gpt-4o-mini", "claude-3-opus-20240229", "claude-3-sonnet-20240229", "claude-3-haiku-20240307", ] class TokenCounter: # Token constants BASE_MESSAGE_TOKENS = 4 FORMAT_TOKENS = 2 LOW_DETAIL_IMAGE_TOKENS = 85 HIGH_DETAIL_TILE_TOKENS = 170 # Image processing constants MAX_SIZE = 2048 HIGH_DETAIL_TARGET_SHORT_SIDE = 768 TILE_SIZE = 512 def __init__(self, tokenizer): self.tokenizer = tokenizer def count_text(self, text: str) -> int: """Calculate tokens for a text string""" return 0 if not text else len(self.tokenizer.encode(text)) def count_image(self, image_item: dict) -> int: """ Calculate tokens for an image based on detail level and dimensions For "low" detail: fixed 85 tokens For "high" detail: 1. Scale to fit in 2048x2048 square 2. Scale shortest side to 768px 3. Count 512px tiles (170 tokens each) 4. Add 85 tokens """ detail = image_item.get("detail", "medium") # For low detail, always return fixed token count if detail == "low": return self.LOW_DETAIL_IMAGE_TOKENS # For medium detail (default in OpenAI), use high detail calculation # OpenAI doesn't specify a separate calculation for medium # For high detail, calculate based on dimensions if available if detail == "high" or detail == "medium": # If dimensions are provided in the image_item if "dimensions" in image_item: width, height = image_item["dimensions"] return self._calculate_high_detail_tokens(width, height) return ( self._calculate_high_detail_tokens(1024, 1024) if detail == "high" else 1024 ) def _calculate_high_detail_tokens(self, width: int, height: int) -> int: """Calculate tokens for high detail images based on dimensions""" # Step 1: Scale to fit in MAX_SIZE x MAX_SIZE square if width > self.MAX_SIZE or height > self.MAX_SIZE: scale = self.MAX_SIZE / max(width, height) width = int(width * scale) height = int(height * scale) # Step 2: Scale so shortest side is HIGH_DETAIL_TARGET_SHORT_SIDE scale = self.HIGH_DETAIL_TARGET_SHORT_SIDE / min(width, height) scaled_width = int(width * scale) scaled_height = int(height * scale) # Step 3: Count number of 512px tiles tiles_x = math.ceil(scaled_width / self.TILE_SIZE) tiles_y = math.ceil(scaled_height / self.TILE_SIZE) total_tiles = tiles_x * tiles_y # Step 4: Calculate final token count return ( total_tiles * self.HIGH_DETAIL_TILE_TOKENS ) + self.LOW_DETAIL_IMAGE_TOKENS def count_content(self, content: Union[str, List[Union[str, dict]]]) -> int: """Calculate tokens for message content""" if not content: return 0 if isinstance(content, str): return self.count_text(content) token_count = 0 for item in content: if isinstance(item, str): token_count += self.count_text(item) elif isinstance(item, dict): if "text" in item: token_count += self.count_text(item["text"]) elif "image_url" in item: token_count += self.count_image(item) return token_count def count_tool_calls(self, tool_calls: List[dict]) -> int: """Calculate tokens for tool calls""" token_count = 0 for tool_call in tool_calls: if "function" in tool_call: function = tool_call["function"] token_count += self.count_text(function.get("name", "")) token_count += self.count_text(function.get("arguments", "")) return token_count def count_message_tokens(self, messages: List[dict]) -> int: """Calculate the total number of tokens in a message list""" total_tokens = self.FORMAT_TOKENS # Base format tokens for message in messages: tokens = self.BASE_MESSAGE_TOKENS # Base tokens per message # Add role tokens tokens += self.count_text(message.get("role", "")) # Add content tokens if "content" in message: tokens += self.count_content(message["content"]) # Add tool calls tokens if "tool_calls" in message: tokens += self.count_tool_calls(message["tool_calls"]) # Add name and tool_call_id tokens tokens += self.count_text(message.get("name", "")) tokens += self.count_text(message.get("tool_call_id", "")) total_tokens += tokens return total_tokens class LLM: _instances: Dict[str, "LLM"] = {} def __new__( cls, config_name: str = "default", llm_config: Optional[LLMSettings] = None ): if config_name not in cls._instances: instance = super().__new__(cls) instance.__init__(config_name, llm_config) cls._instances[config_name] = instance return cls._instances[config_name] def __init__( self, config_name: str = "default", llm_config: Optional[LLMSettings] = None ): if not hasattr(self, "client"): # Only initialize if not already initialized llm_config = llm_config or config.llm llm_config = llm_config.get(config_name, llm_config["default"]) self.model = llm_config.model self.max_tokens = llm_config.max_tokens self.temperature = llm_config.temperature self.api_type = llm_config.api_type self.api_key = llm_config.api_key self.api_version = llm_config.api_version self.base_url = llm_config.base_url # Add token counting related attributes self.total_input_tokens = 0 self.total_completion_tokens = 0 self.max_input_tokens = ( llm_config.max_input_tokens if hasattr(llm_config, "max_input_tokens") else None ) # Initialize tokenizer try: self.tokenizer = tiktoken.encoding_for_model(self.model) except KeyError: # If the model is not in tiktoken's presets, use cl100k_base as default self.tokenizer = tiktoken.get_encoding("cl100k_base") if self.api_type == "azure": self.client = AsyncAzureOpenAI( base_url=self.base_url, api_key=self.api_key, api_version=self.api_version, ) elif self.api_type == "aws": self.client = BedrockClient() else: self.client = AsyncOpenAI(api_key=self.api_key, base_url=self.base_url) self.token_counter = TokenCounter(self.tokenizer) def count_tokens(self, text: str) -> int: """Calculate the number of tokens in a text""" if not text: return 0 return len(self.tokenizer.encode(text)) def count_message_tokens(self, messages: List[dict]) -> int: return self.token_counter.count_message_tokens(messages) def update_token_count(self, input_tokens: int, completion_tokens: int = 0) -> None: """Update token counts""" # Only track tokens if max_input_tokens is set self.total_input_tokens += input_tokens self.total_completion_tokens += completion_tokens logger.info( f"Token usage: Input={input_tokens}, Completion={completion_tokens}, " f"Cumulative Input={self.total_input_tokens}, Cumulative Completion={self.total_completion_tokens}, " f"Total={input_tokens + completion_tokens}, Cumulative Total={self.total_input_tokens + self.total_completion_tokens}" ) def check_token_limit(self, input_tokens: int) -> bool: """Check if token limits are exceeded""" if self.max_input_tokens is not None: return (self.total_input_tokens + input_tokens) <= self.max_input_tokens # If max_input_tokens is not set, always return True return True def get_limit_error_message(self, input_tokens: int) -> str: """Generate error message for token limit exceeded""" if ( self.max_input_tokens is not None and (self.total_input_tokens + input_tokens) > self.max_input_tokens ): return f"Request may exceed input token limit (Current: {self.total_input_tokens}, Needed: {input_tokens}, Max: {self.max_input_tokens})" return "Token limit exceeded" @staticmethod def format_messages( messages: List[Union[dict, Message]], supports_images: bool = False ) -> List[dict]: """ Format messages for LLM by converting them to OpenAI message format. Args: messages: List of messages that can be either dict or Message objects supports_images: Flag indicating if the target model supports image inputs Returns: List[dict]: List of formatted messages in OpenAI format Raises: ValueError: If messages are invalid or missing required fields TypeError: If unsupported message types are provided Examples: >>> msgs = [ ... Message.system_message("You are a helpful assistant"), ... {"role": "user", "content": "Hello"}, ... Message.user_message("How are you?") ... ] >>> formatted = LLM.format_messages(msgs) """ formatted_messages = [] for message in messages: # Convert Message objects to dictionaries if isinstance(message, Message): message = message.to_dict() if isinstance(message, dict): # If message is a dict, ensure it has required fields if "role" not in message: raise ValueError("Message dict must contain 'role' field") # Process base64 images if present and model supports images if supports_images and message.get("base64_image"): # Initialize or convert content to appropriate format if not message.get("content"): message["content"] = [] elif isinstance(message["content"], str): message["content"] = [ {"type": "text", "text": message["content"]} ] elif isinstance(message["content"], list): # Convert string items to proper text objects message["content"] = [ ( {"type": "text", "text": item} if isinstance(item, str) else item ) for item in message["content"] ] # Add the image to content message["content"].append( { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{message['base64_image']}" }, } ) # Remove the base64_image field del message["base64_image"] # If model doesn't support images but message has base64_image, handle gracefully elif not supports_images and message.get("base64_image"): # Just remove the base64_image field and keep the text content del message["base64_image"] if "content" in message or "tool_calls" in message: formatted_messages.append(message) # else: do not include the message else: raise TypeError(f"Unsupported message type: {type(message)}") # Validate all messages have required fields for msg in formatted_messages: if msg["role"] not in ROLE_VALUES: raise ValueError(f"Invalid role: {msg['role']}") return formatted_messages @retry( wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6), retry=retry_if_exception_type( (OpenAIError, Exception, ValueError) ), # Don't retry TokenLimitExceeded ) async def ask( self, messages: List[Union[dict, Message]], system_msgs: Optional[List[Union[dict, Message]]] = None, stream: bool = True, temperature: Optional[float] = None, ) -> str: """ Send a prompt to the LLM and get the response. Args: messages: List of conversation messages system_msgs: Optional system messages to prepend stream (bool): Whether to stream the response temperature (float): Sampling temperature for the response Returns: str: The generated response Raises: TokenLimitExceeded: If token limits are exceeded ValueError: If messages are invalid or response is empty OpenAIError: If API call fails after retries Exception: For unexpected errors """ try: # Check if the model supports images supports_images = self.model in MULTIMODAL_MODELS # Format system and user messages with image support check if system_msgs: system_msgs = self.format_messages(system_msgs, supports_images) messages = system_msgs + self.format_messages(messages, supports_images) else: messages = self.format_messages(messages, supports_images) # Calculate input token count input_tokens = self.count_message_tokens(messages) # Check if token limits are exceeded if not self.check_token_limit(input_tokens): error_message = self.get_limit_error_message(input_tokens) # Raise a special exception that won't be retried raise TokenLimitExceeded(error_message) params = { "model": self.model, "messages": messages, } if self.model in REASONING_MODELS: params["max_completion_tokens"] = self.max_tokens else: params["max_tokens"] = self.max_tokens params["temperature"] = ( temperature if temperature is not None else self.temperature ) if not stream: # Non-streaming request response = await self.client.chat.completions.create( **params, stream=False ) if not response.choices or not response.choices[0].message.content: raise ValueError("Empty or invalid response from LLM") # Update token counts self.update_token_count( response.usage.prompt_tokens, response.usage.completion_tokens ) return response.choices[0].message.content # Streaming request, For streaming, update estimated token count before making the request self.update_token_count(input_tokens) response = await self.client.chat.completions.create(**params, stream=True) collected_messages = [] completion_text = "" async for chunk in response: chunk_message = chunk.choices[0].delta.content or "" collected_messages.append(chunk_message) completion_text += chunk_message print(chunk_message, end="", flush=True) print() # Newline after streaming full_response = "".join(collected_messages).strip() if not full_response: raise ValueError("Empty response from streaming LLM") # estimate completion tokens for streaming response completion_tokens = self.count_tokens(completion_text) logger.info( f"Estimated completion tokens for streaming response: {completion_tokens}" ) self.total_completion_tokens += completion_tokens return full_response except TokenLimitExceeded: # Re-raise token limit errors without logging raise except ValueError: logger.exception(f"Validation error") raise except OpenAIError as oe: logger.exception(f"OpenAI API error") if isinstance(oe, AuthenticationError): logger.error("Authentication failed. Check API key.") elif isinstance(oe, RateLimitError): logger.error("Rate limit exceeded. Consider increasing retry attempts.") elif isinstance(oe, APIError): logger.error(f"API error: {oe}") raise except Exception: logger.exception(f"Unexpected error in ask") raise @retry( wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6), retry=retry_if_exception_type( (OpenAIError, Exception, ValueError) ), # Don't retry TokenLimitExceeded ) async def ask_with_images( self, messages: List[Union[dict, Message]], images: List[Union[str, dict]], system_msgs: Optional[List[Union[dict, Message]]] = None, stream: bool = False, temperature: Optional[float] = None, ) -> str: """ Send a prompt with images to the LLM and get the response. Args: messages: List of conversation messages images: List of image URLs or image data dictionaries system_msgs: Optional system messages to prepend stream (bool): Whether to stream the response temperature (float): Sampling temperature for the response Returns: str: The generated response Raises: TokenLimitExceeded: If token limits are exceeded ValueError: If messages are invalid or response is empty OpenAIError: If API call fails after retries Exception: For unexpected errors """ try: # For ask_with_images, we always set supports_images to True because # this method should only be called with models that support images if self.model not in MULTIMODAL_MODELS: raise ValueError( f"Model {self.model} does not support images. Use a model from {MULTIMODAL_MODELS}" ) # Format messages with image support formatted_messages = self.format_messages(messages, supports_images=True) # Ensure the last message is from the user to attach images if not formatted_messages or formatted_messages[-1]["role"] != "user": raise ValueError( "The last message must be from the user to attach images" ) # Process the last user message to include images last_message = formatted_messages[-1] # Convert content to multimodal format if needed content = last_message["content"] multimodal_content = ( [{"type": "text", "text": content}] if isinstance(content, str) else content if isinstance(content, list) else [] ) # Add images to content for image in images: if isinstance(image, str): multimodal_content.append( {"type": "image_url", "image_url": {"url": image}} ) elif isinstance(image, dict) and "url" in image: multimodal_content.append({"type": "image_url", "image_url": image}) elif isinstance(image, dict) and "image_url" in image: multimodal_content.append(image) else: raise ValueError(f"Unsupported image format: {image}") # Update the message with multimodal content last_message["content"] = multimodal_content # Add system messages if provided if system_msgs: all_messages = ( self.format_messages(system_msgs, supports_images=True) + formatted_messages ) else: all_messages = formatted_messages # Calculate tokens and check limits input_tokens = self.count_message_tokens(all_messages) if not self.check_token_limit(input_tokens): raise TokenLimitExceeded(self.get_limit_error_message(input_tokens)) # Set up API parameters params = { "model": self.model, "messages": all_messages, "stream": stream, } # Add model-specific parameters if self.model in REASONING_MODELS: params["max_completion_tokens"] = self.max_tokens else: params["max_tokens"] = self.max_tokens params["temperature"] = ( temperature if temperature is not None else self.temperature ) # Handle non-streaming request if not stream: response = await self.client.chat.completions.create(**params) if not response.choices or not response.choices[0].message.content: raise ValueError("Empty or invalid response from LLM") self.update_token_count(response.usage.prompt_tokens) return response.choices[0].message.content # Handle streaming request self.update_token_count(input_tokens) response = await self.client.chat.completions.create(**params) collected_messages = [] async for chunk in response: chunk_message = chunk.choices[0].delta.content or "" collected_messages.append(chunk_message) print(chunk_message, end="", flush=True) print() # Newline after streaming full_response = "".join(collected_messages).strip() if not full_response: raise ValueError("Empty response from streaming LLM") return full_response except TokenLimitExceeded: raise except ValueError as ve: logger.error(f"Validation error in ask_with_images: {ve}") raise except OpenAIError as oe: logger.error(f"OpenAI API error: {oe}") if isinstance(oe, AuthenticationError): logger.error("Authentication failed. Check API key.") elif isinstance(oe, RateLimitError): logger.error("Rate limit exceeded. Consider increasing retry attempts.") elif isinstance(oe, APIError): logger.error(f"API error: {oe}") raise except Exception as e: logger.error(f"Unexpected error in ask_with_images: {e}") raise @retry( wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6), retry=retry_if_exception_type( (OpenAIError, Exception, ValueError) ), # Don't retry TokenLimitExceeded ) async def ask_tool( self, messages: List[Union[dict, Message]], system_msgs: Optional[List[Union[dict, Message]]] = None, timeout: int = 300, tools: Optional[List[dict]] = None, tool_choice: TOOL_CHOICE_TYPE = ToolChoice.AUTO, # type: ignore temperature: Optional[float] = None, **kwargs, ) -> ChatCompletionMessage | None: """ Ask LLM using functions/tools and return the response. Args: messages: List of conversation messages system_msgs: Optional system messages to prepend timeout: Request timeout in seconds tools: List of tools to use tool_choice: Tool choice strategy temperature: Sampling temperature for the response **kwargs: Additional completion arguments Returns: ChatCompletionMessage: The model's response Raises: TokenLimitExceeded: If token limits are exceeded ValueError: If tools, tool_choice, or messages are invalid OpenAIError: If API call fails after retries Exception: For unexpected errors """ try: # Validate tool_choice if tool_choice not in TOOL_CHOICE_VALUES: raise ValueError(f"Invalid tool_choice: {tool_choice}") # Check if the model supports images supports_images = self.model in MULTIMODAL_MODELS # Format messages if system_msgs: system_msgs = self.format_messages(system_msgs, supports_images) messages = system_msgs + self.format_messages(messages, supports_images) else: messages = self.format_messages(messages, supports_images) # Calculate input token count input_tokens = self.count_message_tokens(messages) # If there are tools, calculate token count for tool descriptions tools_tokens = 0 if tools: for tool in tools: tools_tokens += self.count_tokens(str(tool)) input_tokens += tools_tokens # Check if token limits are exceeded if not self.check_token_limit(input_tokens): error_message = self.get_limit_error_message(input_tokens) # Raise a special exception that won't be retried raise TokenLimitExceeded(error_message) # Validate tools if provided if tools: for tool in tools: if not isinstance(tool, dict) or "type" not in tool: raise ValueError("Each tool must be a dict with 'type' field") # Set up the completion request params = { "model": self.model, "messages": messages, "tools": tools, "tool_choice": tool_choice, "timeout": timeout, **kwargs, } if self.model in REASONING_MODELS: params["max_completion_tokens"] = self.max_tokens else: params["max_tokens"] = self.max_tokens params["temperature"] = ( temperature if temperature is not None else self.temperature ) params["stream"] = False # Always use non-streaming for tool requests response: ChatCompletion = await self.client.chat.completions.create( **params ) # Check if response is valid if not response.choices or not response.choices[0].message: print(response) # raise ValueError("Invalid or empty response from LLM") return None # Update token counts self.update_token_count( response.usage.prompt_tokens, response.usage.completion_tokens ) return response.choices[0].message except TokenLimitExceeded: # Re-raise token limit errors without logging raise except ValueError as ve: logger.error(f"Validation error in ask_tool: {ve}") raise except OpenAIError as oe: logger.error(f"OpenAI API error: {oe}") if isinstance(oe, AuthenticationError): logger.error("Authentication failed. Check API key.") elif isinstance(oe, RateLimitError): logger.error("Rate limit exceeded. Consider increasing retry attempts.") elif isinstance(oe, APIError): logger.error(f"API error: {oe}") raise except Exception as e: logger.error(f"Unexpected error in ask_tool: {e}") raise ``` ## /app/logger.py ```py path="/app/logger.py" import sys from datetime import datetime from loguru import logger as _logger from app.config import PROJECT_ROOT _print_level = "INFO" def define_log_level(print_level="INFO", logfile_level="DEBUG", name: str = None): """Adjust the log level to above level""" global _print_level _print_level = print_level current_date = datetime.now() formatted_date = current_date.strftime("%Y%m%d%H%M%S") log_name = ( f"{name}_{formatted_date}" if name else formatted_date ) # name a log with prefix name _logger.remove() _logger.add(sys.stderr, level=print_level) _logger.add(PROJECT_ROOT / f"logs/{log_name}.log", level=logfile_level) return _logger logger = define_log_level() if __name__ == "__main__": logger.info("Starting application") logger.debug("Debug message") logger.warning("Warning message") logger.error("Error message") logger.critical("Critical message") try: raise ValueError("Test error") except Exception as e: logger.exception(f"An error occurred: {e}") ``` ## /app/mcp/__init__.py ```py path="/app/mcp/__init__.py" ``` ## /app/mcp/server.py ```py path="/app/mcp/server.py" import logging import sys logging.basicConfig(level=logging.INFO, handlers=[logging.StreamHandler(sys.stderr)]) import argparse import asyncio import atexit import json from inspect import Parameter, Signature from typing import Any, Dict, Optional from mcp.server.fastmcp import FastMCP from app.logger import logger from app.tool.base import BaseTool from app.tool.bash import Bash from app.tool.browser_use_tool import BrowserUseTool from app.tool.str_replace_editor import StrReplaceEditor from app.tool.terminate import Terminate class MCPServer: """MCP Server implementation with tool registration and management.""" def __init__(self, name: str = "openmanus"): self.server = FastMCP(name) self.tools: Dict[str, BaseTool] = {} # Initialize standard tools self.tools["bash"] = Bash() self.tools["browser"] = BrowserUseTool() self.tools["editor"] = StrReplaceEditor() self.tools["terminate"] = Terminate() def register_tool(self, tool: BaseTool, method_name: Optional[str] = None) -> None: """Register a tool with parameter validation and documentation.""" tool_name = method_name or tool.name tool_param = tool.to_param() tool_function = tool_param["function"] # Define the async function to be registered async def tool_method(**kwargs): logger.info(f"Executing {tool_name}: {kwargs}") result = await tool.execute(**kwargs) logger.info(f"Result of {tool_name}: {result}") # Handle different types of results (match original logic) if hasattr(result, "model_dump"): return json.dumps(result.model_dump()) elif isinstance(result, dict): return json.dumps(result) return result # Set method metadata tool_method.__name__ = tool_name tool_method.__doc__ = self._build_docstring(tool_function) tool_method.__signature__ = self._build_signature(tool_function) # Store parameter schema (important for tools that access it programmatically) param_props = tool_function.get("parameters", {}).get("properties", {}) required_params = tool_function.get("parameters", {}).get("required", []) tool_method._parameter_schema = { param_name: { "description": param_details.get("description", ""), "type": param_details.get("type", "any"), "required": param_name in required_params, } for param_name, param_details in param_props.items() } # Register with server self.server.tool()(tool_method) logger.info(f"Registered tool: {tool_name}") def _build_docstring(self, tool_function: dict) -> str: """Build a formatted docstring from tool function metadata.""" description = tool_function.get("description", "") param_props = tool_function.get("parameters", {}).get("properties", {}) required_params = tool_function.get("parameters", {}).get("required", []) # Build docstring (match original format) docstring = description if param_props: docstring += "\n\nParameters:\n" for param_name, param_details in param_props.items(): required_str = ( "(required)" if param_name in required_params else "(optional)" ) param_type = param_details.get("type", "any") param_desc = param_details.get("description", "") docstring += ( f" {param_name} ({param_type}) {required_str}: {param_desc}\n" ) return docstring def _build_signature(self, tool_function: dict) -> Signature: """Build a function signature from tool function metadata.""" param_props = tool_function.get("parameters", {}).get("properties", {}) required_params = tool_function.get("parameters", {}).get("required", []) parameters = [] # Follow original type mapping for param_name, param_details in param_props.items(): param_type = param_details.get("type", "") default = Parameter.empty if param_name in required_params else None # Map JSON Schema types to Python types (same as original) annotation = Any if param_type == "string": annotation = str elif param_type == "integer": annotation = int elif param_type == "number": annotation = float elif param_type == "boolean": annotation = bool elif param_type == "object": annotation = dict elif param_type == "array": annotation = list # Create parameter with same structure as original param = Parameter( name=param_name, kind=Parameter.KEYWORD_ONLY, default=default, annotation=annotation, ) parameters.append(param) return Signature(parameters=parameters) async def cleanup(self) -> None: """Clean up server resources.""" logger.info("Cleaning up resources") # Follow original cleanup logic - only clean browser tool if "browser" in self.tools and hasattr(self.tools["browser"], "cleanup"): await self.tools["browser"].cleanup() def register_all_tools(self) -> None: """Register all tools with the server.""" for tool in self.tools.values(): self.register_tool(tool) def run(self, transport: str = "stdio") -> None: """Run the MCP server.""" # Register all tools self.register_all_tools() # Register cleanup function (match original behavior) atexit.register(lambda: asyncio.run(self.cleanup())) # Start server (with same logging as original) logger.info(f"Starting OpenManus server ({transport} mode)") self.server.run(transport=transport) def parse_args() -> argparse.Namespace: """Parse command line arguments.""" parser = argparse.ArgumentParser(description="OpenManus MCP Server") parser.add_argument( "--transport", choices=["stdio"], default="stdio", help="Communication method: stdio or http (default: stdio)", ) return parser.parse_args() if __name__ == "__main__": args = parse_args() # Create and run server (maintaining original flow) server = MCPServer() server.run(transport=args.transport) ``` ## /app/prompt/__init__.py ```py path="/app/prompt/__init__.py" ``` ## /app/prompt/browser.py ```py path="/app/prompt/browser.py" SYSTEM_PROMPT = """\ You are an AI agent designed to automate browser tasks. Your goal is to accomplish the ultimate task following the rules. # Input Format Task Previous steps Current URL Open Tabs Interactive Elements [index]text - index: Numeric identifier for interaction - type: HTML element type (button, input, etc.) - text: Element description Example: [33] - Only elements with numeric indexes in [] are interactive - elements without [] provide only context # Response Rules 1. RESPONSE FORMAT: You must ALWAYS respond with valid JSON in this exact format: {{"current_state": {{"evaluation_previous_goal": "Success|Failed|Unknown - Analyze the current elements and the image to check if the previous goals/actions are successful like intended by the task. Mention if something unexpected happened. Shortly state why/why not", "memory": "Description of what has been done and what you need to remember. Be very specific. Count here ALWAYS how many times you have done something and how many remain. E.g. 0 out of 10 websites analyzed. Continue with abc and xyz", "next_goal": "What needs to be done with the next immediate action"}}, "action":[{{"one_action_name": {{// action-specific parameter}}}}, // ... more actions in sequence]}} 2. ACTIONS: You can specify multiple actions in the list to be executed in sequence. But always specify only one action name per item. Use maximum {{max_actions}} actions per sequence. Common action sequences: - Form filling: [{{"input_text": {{"index": 1, "text": "username"}}}}, {{"input_text": {{"index": 2, "text": "password"}}}}, {{"click_element": {{"index": 3}}}}] - Navigation and extraction: [{{"go_to_url": {{"url": "https://example.com"}}}}, {{"extract_content": {{"goal": "extract the names"}}}}] - Actions are executed in the given order - If the page changes after an action, the sequence is interrupted and you get the new state. - Only provide the action sequence until an action which changes the page state significantly. - Try to be efficient, e.g. fill forms at once, or chain actions where nothing changes on the page - only use multiple actions if it makes sense. 3. ELEMENT INTERACTION: - Only use indexes of the interactive elements - Elements marked with "[]Non-interactive text" are non-interactive 4. NAVIGATION & ERROR HANDLING: - If no suitable elements exist, use other functions to complete the task - If stuck, try alternative approaches - like going back to a previous page, new search, new tab etc. - Handle popups/cookies by accepting or closing them - Use scroll to find elements you are looking for - If you want to research something, open a new tab instead of using the current tab - If captcha pops up, try to solve it - else try a different approach - If the page is not fully loaded, use wait action 5. TASK COMPLETION: - Use the done action as the last action as soon as the ultimate task is complete - Dont use "done" before you are done with everything the user asked you, except you reach the last step of max_steps. - If you reach your last step, use the done action even if the task is not fully finished. Provide all the information you have gathered so far. If the ultimate task is completly finished set success to true. If not everything the user asked for is completed set success in done to false! - If you have to do something repeatedly for example the task says for "each", or "for all", or "x times", count always inside "memory" how many times you have done it and how many remain. Don't stop until you have completed like the task asked you. Only call done after the last step. - Don't hallucinate actions - Make sure you include everything you found out for the ultimate task in the done text parameter. Do not just say you are done, but include the requested information of the task. 6. VISUAL CONTEXT: - When an image is provided, use it to understand the page layout - Bounding boxes with labels on their top right corner correspond to element indexes 7. Form filling: - If you fill an input field and your action sequence is interrupted, most often something changed e.g. suggestions popped up under the field. 8. Long tasks: - Keep track of the status and subresults in the memory. 9. Extraction: - If your task is to find information - call extract_content on the specific pages to get and store the information. Your responses must be always JSON with the specified format. """ NEXT_STEP_PROMPT = """ What should I do next to achieve my goal? When you see [Current state starts here], focus on the following: - Current URL and page title{url_placeholder} - Available tabs{tabs_placeholder} - Interactive elements and their indices - Content above{content_above_placeholder} or below{content_below_placeholder} the viewport (if indicated) - Any action results or errors{results_placeholder} For browser interactions: - To navigate: browser_use with action="go_to_url", url="..." - To click: browser_use with action="click_element", index=N - To type: browser_use with action="input_text", index=N, text="..." - To extract: browser_use with action="extract_content", goal="..." - To scroll: browser_use with action="scroll_down" or "scroll_up" Consider both what's visible and what might be beyond the current viewport. Be methodical - remember your progress and what you've learned so far. If you want to stop the interaction at any point, use the `terminate` tool/function call. """ ``` ## /app/prompt/manus.py ```py path="/app/prompt/manus.py" SYSTEM_PROMPT = ( "You are OpenManus, an all-capable AI assistant, aimed at solving any task presented by the user. You have various tools at your disposal that you can call upon to efficiently complete complex requests. Whether it's programming, information retrieval, file processing, web browsing, or human interaction (only for extreme cases), you can handle it all." "The initial directory is: {directory}" ) NEXT_STEP_PROMPT = """ Based on user needs, proactively select the most appropriate tool or combination of tools. For complex tasks, you can break down the problem and use different tools step by step to solve it. After using each tool, clearly explain the execution results and suggest the next steps. If you want to stop the interaction at any point, use the `terminate` tool/function call. """ ``` ## /app/prompt/mcp.py ```py path="/app/prompt/mcp.py" """Prompts for the MCP Agent.""" SYSTEM_PROMPT = """You are an AI assistant with access to a Model Context Protocol (MCP) server. You can use the tools provided by the MCP server to complete tasks. The MCP server will dynamically expose tools that you can use - always check the available tools first. When using an MCP tool: 1. Choose the appropriate tool based on your task requirements 2. Provide properly formatted arguments as required by the tool 3. Observe the results and use them to determine next steps 4. Tools may change during operation - new tools might appear or existing ones might disappear Follow these guidelines: - Call tools with valid parameters as documented in their schemas - Handle errors gracefully by understanding what went wrong and trying again with corrected parameters - For multimedia responses (like images), you'll receive a description of the content - Complete user requests step by step, using the most appropriate tools - If multiple tools need to be called in sequence, make one call at a time and wait for results Remember to clearly explain your reasoning and actions to the user. """ NEXT_STEP_PROMPT = """Based on the current state and available tools, what should be done next? Think step by step about the problem and identify which MCP tool would be most helpful for the current stage. If you've already made progress, consider what additional information you need or what actions would move you closer to completing the task. """ # Additional specialized prompts TOOL_ERROR_PROMPT = """You encountered an error with the tool '{tool_name}'. Try to understand what went wrong and correct your approach. Common issues include: - Missing or incorrect parameters - Invalid parameter formats - Using a tool that's no longer available - Attempting an operation that's not supported Please check the tool specifications and try again with corrected parameters. """ MULTIMEDIA_RESPONSE_PROMPT = """You've received a multimedia response (image, audio, etc.) from the tool '{tool_name}'. This content has been processed and described for you. Use this information to continue the task or provide insights to the user. """ ``` ## /app/prompt/planning.py ```py path="/app/prompt/planning.py" PLANNING_SYSTEM_PROMPT = """ You are an expert Planning Agent tasked with solving problems efficiently through structured plans. Your job is: 1. Analyze requests to understand the task scope 2. Create a clear, actionable plan that makes meaningful progress with the `planning` tool 3. Execute steps using available tools as needed 4. Track progress and adapt plans when necessary 5. Use `finish` to conclude immediately when the task is complete Available tools will vary by task but may include: - `planning`: Create, update, and track plans (commands: create, update, mark_step, etc.) - `finish`: End the task when complete Break tasks into logical steps with clear outcomes. Avoid excessive detail or sub-steps. Think about dependencies and verification methods. Know when to conclude - don't continue thinking once objectives are met. """ NEXT_STEP_PROMPT = """ Based on the current state, what's your next action? Choose the most efficient path forward: 1. Is the plan sufficient, or does it need refinement? 2. Can you execute the next step immediately? 3. Is the task complete? If so, use `finish` right away. Be concise in your reasoning, then select the appropriate tool or action. """ ``` ## /app/prompt/swe.py ```py path="/app/prompt/swe.py" SYSTEM_PROMPT = """SETTING: You are an autonomous programmer, and you're working directly in the command line with a special interface. The special interface consists of a file editor that shows you {{WINDOW}} lines of a file at a time. In addition to typical bash commands, you can also use specific commands to help you navigate and edit files. To call a command, you need to invoke it with a function call/tool call. Please note that THE EDIT COMMAND REQUIRES PROPER INDENTATION. If you'd like to add the line ' print(x)' you must fully write that out, with all those spaces before the code! Indentation is important and code that is not indented correctly will fail and require fixing before it can be run. RESPONSE FORMAT: Your shell prompt is formatted as follows: (Open file: ) (Current directory: ) bash-$ First, you should _always_ include a general thought about what you're going to do next. Then, for every response, you must include exactly _ONE_ tool call/function call. Remember, you should always include a _SINGLE_ tool call/function call and then wait for a response from the shell before continuing with more discussion and commands. Everything you include in the DISCUSSION section will be saved for future reference. If you'd like to issue two commands at once, PLEASE DO NOT DO THAT! Please instead first submit just the first tool call, and then after receiving a response you'll be able to issue the second tool call. Note that the environment does NOT support interactive session commands (e.g. python, vim), so please do not invoke them. """ ``` ## /app/prompt/toolcall.py ```py path="/app/prompt/toolcall.py" SYSTEM_PROMPT = "You are an agent that can execute tool calls" NEXT_STEP_PROMPT = ( "If you want to stop interaction, use `terminate` tool/function call." ) ``` ## /app/prompt/visualization.py ```py path="/app/prompt/visualization.py" SYSTEM_PROMPT = """You are an AI agent designed to data analysis / visualization task. You have various tools at your disposal that you can call upon to efficiently complete complex requests. # Note: 1. The workspace directory is: {directory}; Read / write file in workspace 2. Generate analysis conclusion report in the end""" NEXT_STEP_PROMPT = """Based on user needs, break down the problem and use different tools step by step to solve it. # Note 1. Each step select the most appropriate tool proactively (ONLY ONE). 2. After using each tool, clearly explain the execution results and suggest the next steps. 3. When observation with Error, review and fix it.""" ``` ## /app/sandbox/__init__.py ```py path="/app/sandbox/__init__.py" """ Docker Sandbox Module Provides secure containerized execution environment with resource limits and isolation for running untrusted code. """ from app.sandbox.client import ( BaseSandboxClient, LocalSandboxClient, create_sandbox_client, ) from app.sandbox.core.exceptions import ( SandboxError, SandboxResourceError, SandboxTimeoutError, ) from app.sandbox.core.manager import SandboxManager from app.sandbox.core.sandbox import DockerSandbox __all__ = [ "DockerSandbox", "SandboxManager", "BaseSandboxClient", "LocalSandboxClient", "create_sandbox_client", "SandboxError", "SandboxTimeoutError", "SandboxResourceError", ] ``` ## /app/sandbox/client.py ```py path="/app/sandbox/client.py" from abc import ABC, abstractmethod from typing import Dict, Optional, Protocol from app.config import SandboxSettings from app.sandbox.core.sandbox import DockerSandbox class SandboxFileOperations(Protocol): """Protocol for sandbox file operations.""" async def copy_from(self, container_path: str, local_path: str) -> None: """Copies file from container to local. Args: container_path: File path in container. local_path: Local destination path. """ ... async def copy_to(self, local_path: str, container_path: str) -> None: """Copies file from local to container. Args: local_path: Local source file path. container_path: Destination path in container. """ ... async def read_file(self, path: str) -> str: """Reads file content from container. Args: path: File path in container. Returns: str: File content. """ ... async def write_file(self, path: str, content: str) -> None: """Writes content to file in container. Args: path: File path in container. content: Content to write. """ ... class BaseSandboxClient(ABC): """Base sandbox client interface.""" @abstractmethod async def create( self, config: Optional[SandboxSettings] = None, volume_bindings: Optional[Dict[str, str]] = None, ) -> None: """Creates sandbox.""" @abstractmethod async def run_command(self, command: str, timeout: Optional[int] = None) -> str: """Executes command.""" @abstractmethod async def copy_from(self, container_path: str, local_path: str) -> None: """Copies file from container.""" @abstractmethod async def copy_to(self, local_path: str, container_path: str) -> None: """Copies file to container.""" @abstractmethod async def read_file(self, path: str) -> str: """Reads file.""" @abstractmethod async def write_file(self, path: str, content: str) -> None: """Writes file.""" @abstractmethod async def cleanup(self) -> None: """Cleans up resources.""" class LocalSandboxClient(BaseSandboxClient): """Local sandbox client implementation.""" def __init__(self): """Initializes local sandbox client.""" self.sandbox: Optional[DockerSandbox] = None async def create( self, config: Optional[SandboxSettings] = None, volume_bindings: Optional[Dict[str, str]] = None, ) -> None: """Creates a sandbox. Args: config: Sandbox configuration. volume_bindings: Volume mappings. Raises: RuntimeError: If sandbox creation fails. """ self.sandbox = DockerSandbox(config, volume_bindings) await self.sandbox.create() async def run_command(self, command: str, timeout: Optional[int] = None) -> str: """Runs command in sandbox. Args: command: Command to execute. timeout: Execution timeout in seconds. Returns: Command output. Raises: RuntimeError: If sandbox not initialized. """ if not self.sandbox: raise RuntimeError("Sandbox not initialized") return await self.sandbox.run_command(command, timeout) async def copy_from(self, container_path: str, local_path: str) -> None: """Copies file from container to local. Args: container_path: File path in container. local_path: Local destination path. Raises: RuntimeError: If sandbox not initialized. """ if not self.sandbox: raise RuntimeError("Sandbox not initialized") await self.sandbox.copy_from(container_path, local_path) async def copy_to(self, local_path: str, container_path: str) -> None: """Copies file from local to container. Args: local_path: Local source file path. container_path: Destination path in container. Raises: RuntimeError: If sandbox not initialized. """ if not self.sandbox: raise RuntimeError("Sandbox not initialized") await self.sandbox.copy_to(local_path, container_path) async def read_file(self, path: str) -> str: """Reads file from container. Args: path: File path in container. Returns: File content. Raises: RuntimeError: If sandbox not initialized. """ if not self.sandbox: raise RuntimeError("Sandbox not initialized") return await self.sandbox.read_file(path) async def write_file(self, path: str, content: str) -> None: """Writes file to container. Args: path: File path in container. content: File content. Raises: RuntimeError: If sandbox not initialized. """ if not self.sandbox: raise RuntimeError("Sandbox not initialized") await self.sandbox.write_file(path, content) async def cleanup(self) -> None: """Cleans up resources.""" if self.sandbox: await self.sandbox.cleanup() self.sandbox = None def create_sandbox_client() -> LocalSandboxClient: """Creates a sandbox client. Returns: LocalSandboxClient: Sandbox client instance. """ return LocalSandboxClient() SANDBOX_CLIENT = create_sandbox_client() ``` ## /app/sandbox/core/exceptions.py ```py path="/app/sandbox/core/exceptions.py" """Exception classes for the sandbox system. This module defines custom exceptions used throughout the sandbox system to handle various error conditions in a structured way. """ class SandboxError(Exception): """Base exception for sandbox-related errors.""" class SandboxTimeoutError(SandboxError): """Exception raised when a sandbox operation times out.""" class SandboxResourceError(SandboxError): """Exception raised for resource-related errors.""" ``` ## /app/sandbox/core/manager.py ```py path="/app/sandbox/core/manager.py" import asyncio import uuid from contextlib import asynccontextmanager from typing import Dict, Optional, Set import docker from docker.errors import APIError, ImageNotFound from app.config import SandboxSettings from app.logger import logger from app.sandbox.core.sandbox import DockerSandbox class SandboxManager: """Docker sandbox manager. Manages multiple DockerSandbox instances lifecycle including creation, monitoring, and cleanup. Provides concurrent access control and automatic cleanup mechanisms for sandbox resources. Attributes: max_sandboxes: Maximum allowed number of sandboxes. idle_timeout: Sandbox idle timeout in seconds. cleanup_interval: Cleanup check interval in seconds. _sandboxes: Active sandbox instance mapping. _last_used: Last used time record for sandboxes. """ def __init__( self, max_sandboxes: int = 100, idle_timeout: int = 3600, cleanup_interval: int = 300, ): """Initializes sandbox manager. Args: max_sandboxes: Maximum sandbox count limit. idle_timeout: Idle timeout in seconds. cleanup_interval: Cleanup check interval in seconds. """ self.max_sandboxes = max_sandboxes self.idle_timeout = idle_timeout self.cleanup_interval = cleanup_interval # Docker client self._client = docker.from_env() # Resource mappings self._sandboxes: Dict[str, DockerSandbox] = {} self._last_used: Dict[str, float] = {} # Concurrency control self._locks: Dict[str, asyncio.Lock] = {} self._global_lock = asyncio.Lock() self._active_operations: Set[str] = set() # Cleanup task self._cleanup_task: Optional[asyncio.Task] = None self._is_shutting_down = False # Start automatic cleanup self.start_cleanup_task() async def ensure_image(self, image: str) -> bool: """Ensures Docker image is available. Args: image: Image name. Returns: bool: Whether image is available. """ try: self._client.images.get(image) return True except ImageNotFound: try: logger.info(f"Pulling image {image}...") await asyncio.get_event_loop().run_in_executor( None, self._client.images.pull, image ) return True except (APIError, Exception) as e: logger.error(f"Failed to pull image {image}: {e}") return False @asynccontextmanager async def sandbox_operation(self, sandbox_id: str): """Context manager for sandbox operations. Provides concurrency control and usage time updates. Args: sandbox_id: Sandbox ID. Raises: KeyError: If sandbox not found. """ if sandbox_id not in self._locks: self._locks[sandbox_id] = asyncio.Lock() async with self._locks[sandbox_id]: if sandbox_id not in self._sandboxes: raise KeyError(f"Sandbox {sandbox_id} not found") self._active_operations.add(sandbox_id) try: self._last_used[sandbox_id] = asyncio.get_event_loop().time() yield self._sandboxes[sandbox_id] finally: self._active_operations.remove(sandbox_id) async def create_sandbox( self, config: Optional[SandboxSettings] = None, volume_bindings: Optional[Dict[str, str]] = None, ) -> str: """Creates a new sandbox instance. Args: config: Sandbox configuration. volume_bindings: Volume mapping configuration. Returns: str: Sandbox ID. Raises: RuntimeError: If max sandbox count reached or creation fails. """ async with self._global_lock: if len(self._sandboxes) >= self.max_sandboxes: raise RuntimeError( f"Maximum number of sandboxes ({self.max_sandboxes}) reached" ) config = config or SandboxSettings() if not await self.ensure_image(config.image): raise RuntimeError(f"Failed to ensure Docker image: {config.image}") sandbox_id = str(uuid.uuid4()) try: sandbox = DockerSandbox(config, volume_bindings) await sandbox.create() self._sandboxes[sandbox_id] = sandbox self._last_used[sandbox_id] = asyncio.get_event_loop().time() self._locks[sandbox_id] = asyncio.Lock() logger.info(f"Created sandbox {sandbox_id}") return sandbox_id except Exception as e: logger.error(f"Failed to create sandbox: {e}") if sandbox_id in self._sandboxes: await self.delete_sandbox(sandbox_id) raise RuntimeError(f"Failed to create sandbox: {e}") async def get_sandbox(self, sandbox_id: str) -> DockerSandbox: """Gets a sandbox instance. Args: sandbox_id: Sandbox ID. Returns: DockerSandbox: Sandbox instance. Raises: KeyError: If sandbox does not exist. """ async with self.sandbox_operation(sandbox_id) as sandbox: return sandbox def start_cleanup_task(self) -> None: """Starts automatic cleanup task.""" async def cleanup_loop(): while not self._is_shutting_down: try: await self._cleanup_idle_sandboxes() except Exception as e: logger.error(f"Error in cleanup loop: {e}") await asyncio.sleep(self.cleanup_interval) self._cleanup_task = asyncio.create_task(cleanup_loop()) async def _cleanup_idle_sandboxes(self) -> None: """Cleans up idle sandboxes.""" current_time = asyncio.get_event_loop().time() to_cleanup = [] async with self._global_lock: for sandbox_id, last_used in self._last_used.items(): if ( sandbox_id not in self._active_operations and current_time - last_used > self.idle_timeout ): to_cleanup.append(sandbox_id) for sandbox_id in to_cleanup: try: await self.delete_sandbox(sandbox_id) except Exception as e: logger.error(f"Error cleaning up sandbox {sandbox_id}: {e}") async def cleanup(self) -> None: """Cleans up all resources.""" logger.info("Starting manager cleanup...") self._is_shutting_down = True # Cancel cleanup task if self._cleanup_task: self._cleanup_task.cancel() try: await asyncio.wait_for(self._cleanup_task, timeout=1.0) except (asyncio.CancelledError, asyncio.TimeoutError): pass # Get all sandbox IDs to clean up async with self._global_lock: sandbox_ids = list(self._sandboxes.keys()) # Concurrently clean up all sandboxes cleanup_tasks = [] for sandbox_id in sandbox_ids: task = asyncio.create_task(self._safe_delete_sandbox(sandbox_id)) cleanup_tasks.append(task) if cleanup_tasks: # Wait for all cleanup tasks to complete, with timeout to avoid infinite waiting try: await asyncio.wait(cleanup_tasks, timeout=30.0) except asyncio.TimeoutError: logger.error("Sandbox cleanup timed out") # Clean up remaining references self._sandboxes.clear() self._last_used.clear() self._locks.clear() self._active_operations.clear() logger.info("Manager cleanup completed") async def _safe_delete_sandbox(self, sandbox_id: str) -> None: """Safely deletes a single sandbox. Args: sandbox_id: Sandbox ID to delete. """ try: if sandbox_id in self._active_operations: logger.warning( f"Sandbox {sandbox_id} has active operations, waiting for completion" ) for _ in range(10): # Wait at most 10 times await asyncio.sleep(0.5) if sandbox_id not in self._active_operations: break else: logger.warning( f"Timeout waiting for sandbox {sandbox_id} operations to complete" ) # Get reference to sandbox object sandbox = self._sandboxes.get(sandbox_id) if sandbox: await sandbox.cleanup() # Remove sandbox record from manager async with self._global_lock: self._sandboxes.pop(sandbox_id, None) self._last_used.pop(sandbox_id, None) self._locks.pop(sandbox_id, None) logger.info(f"Deleted sandbox {sandbox_id}") except Exception as e: logger.error(f"Error during cleanup of sandbox {sandbox_id}: {e}") async def delete_sandbox(self, sandbox_id: str) -> None: """Deletes specified sandbox. Args: sandbox_id: Sandbox ID. """ if sandbox_id not in self._sandboxes: return try: await self._safe_delete_sandbox(sandbox_id) except Exception as e: logger.error(f"Failed to delete sandbox {sandbox_id}: {e}") async def __aenter__(self) -> "SandboxManager": """Async context manager entry.""" return self async def __aexit__(self, exc_type, exc_val, exc_tb) -> None: """Async context manager exit.""" await self.cleanup() def get_stats(self) -> Dict: """Gets manager statistics. Returns: Dict: Statistics information. """ return { "total_sandboxes": len(self._sandboxes), "active_operations": len(self._active_operations), "max_sandboxes": self.max_sandboxes, "idle_timeout": self.idle_timeout, "cleanup_interval": self.cleanup_interval, "is_shutting_down": self._is_shutting_down, } ``` ## /app/sandbox/core/sandbox.py ```py path="/app/sandbox/core/sandbox.py" import asyncio import io import os import tarfile import tempfile import uuid from typing import Dict, Optional import docker from docker.errors import NotFound from docker.models.containers import Container from app.config import SandboxSettings from app.sandbox.core.exceptions import SandboxTimeoutError from app.sandbox.core.terminal import AsyncDockerizedTerminal class DockerSandbox: """Docker sandbox environment. Provides a containerized execution environment with resource limits, file operations, and command execution capabilities. Attributes: config: Sandbox configuration. volume_bindings: Volume mapping configuration. client: Docker client. container: Docker container instance. terminal: Container terminal interface. """ def __init__( self, config: Optional[SandboxSettings] = None, volume_bindings: Optional[Dict[str, str]] = None, ): """Initializes a sandbox instance. Args: config: Sandbox configuration. Default configuration used if None. volume_bindings: Volume mappings in {host_path: container_path} format. """ self.config = config or SandboxSettings() self.volume_bindings = volume_bindings or {} self.client = docker.from_env() self.container: Optional[Container] = None self.terminal: Optional[AsyncDockerizedTerminal] = None async def create(self) -> "DockerSandbox": """Creates and starts the sandbox container. Returns: Current sandbox instance. Raises: docker.errors.APIError: If Docker API call fails. RuntimeError: If container creation or startup fails. """ try: # Prepare container config host_config = self.client.api.create_host_config( mem_limit=self.config.memory_limit, cpu_period=100000, cpu_quota=int(100000 * self.config.cpu_limit), network_mode="none" if not self.config.network_enabled else "bridge", binds=self._prepare_volume_bindings(), ) # Generate unique container name with sandbox_ prefix container_name = f"sandbox_{uuid.uuid4().hex[:8]}" # Create container container = await asyncio.to_thread( self.client.api.create_container, image=self.config.image, command="tail -f /dev/null", hostname="sandbox", working_dir=self.config.work_dir, host_config=host_config, name=container_name, tty=True, detach=True, ) self.container = self.client.containers.get(container["Id"]) # Start container await asyncio.to_thread(self.container.start) # Initialize terminal self.terminal = AsyncDockerizedTerminal( container["Id"], self.config.work_dir, env_vars={"PYTHONUNBUFFERED": "1"} # Ensure Python output is not buffered ) await self.terminal.init() return self except Exception as e: await self.cleanup() # Ensure resources are cleaned up raise RuntimeError(f"Failed to create sandbox: {e}") from e def _prepare_volume_bindings(self) -> Dict[str, Dict[str, str]]: """Prepares volume binding configuration. Returns: Volume binding configuration dictionary. """ bindings = {} # Create and add working directory mapping work_dir = self._ensure_host_dir(self.config.work_dir) bindings[work_dir] = {"bind": self.config.work_dir, "mode": "rw"} # Add custom volume bindings for host_path, container_path in self.volume_bindings.items(): bindings[host_path] = {"bind": container_path, "mode": "rw"} return bindings @staticmethod def _ensure_host_dir(path: str) -> str: """Ensures directory exists on the host. Args: path: Directory path. Returns: Actual path on the host. """ host_path = os.path.join( tempfile.gettempdir(), f"sandbox_{os.path.basename(path)}_{os.urandom(4).hex()}", ) os.makedirs(host_path, exist_ok=True) return host_path async def run_command(self, cmd: str, timeout: Optional[int] = None) -> str: """Runs a command in the sandbox. Args: cmd: Command to execute. timeout: Timeout in seconds. Returns: Command output as string. Raises: RuntimeError: If sandbox not initialized or command execution fails. TimeoutError: If command execution times out. """ if not self.terminal: raise RuntimeError("Sandbox not initialized") try: return await self.terminal.run_command( cmd, timeout=timeout or self.config.timeout ) except TimeoutError: raise SandboxTimeoutError( f"Command execution timed out after {timeout or self.config.timeout} seconds" ) async def read_file(self, path: str) -> str: """Reads a file from the container. Args: path: File path. Returns: File contents as string. Raises: FileNotFoundError: If file does not exist. RuntimeError: If read operation fails. """ if not self.container: raise RuntimeError("Sandbox not initialized") try: # Get file archive resolved_path = self._safe_resolve_path(path) tar_stream, _ = await asyncio.to_thread( self.container.get_archive, resolved_path ) # Read file content from tar stream content = await self._read_from_tar(tar_stream) return content.decode("utf-8") except NotFound: raise FileNotFoundError(f"File not found: {path}") except Exception as e: raise RuntimeError(f"Failed to read file: {e}") async def write_file(self, path: str, content: str) -> None: """Writes content to a file in the container. Args: path: Target path. content: File content. Raises: RuntimeError: If write operation fails. """ if not self.container: raise RuntimeError("Sandbox not initialized") try: resolved_path = self._safe_resolve_path(path) parent_dir = os.path.dirname(resolved_path) # Create parent directory if parent_dir: await self.run_command(f"mkdir -p {parent_dir}") # Prepare file data tar_stream = await self._create_tar_stream( os.path.basename(path), content.encode("utf-8") ) # Write file await asyncio.to_thread( self.container.put_archive, parent_dir or "/", tar_stream ) except Exception as e: raise RuntimeError(f"Failed to write file: {e}") def _safe_resolve_path(self, path: str) -> str: """Safely resolves container path, preventing path traversal. Args: path: Original path. Returns: Resolved absolute path. Raises: ValueError: If path contains potentially unsafe patterns. """ # Check for path traversal attempts if ".." in path.split("/"): raise ValueError("Path contains potentially unsafe patterns") resolved = ( os.path.join(self.config.work_dir, path) if not os.path.isabs(path) else path ) return resolved async def copy_from(self, src_path: str, dst_path: str) -> None: """Copies a file from the container. Args: src_path: Source file path (container). dst_path: Destination path (host). Raises: FileNotFoundError: If source file does not exist. RuntimeError: If copy operation fails. """ try: # Ensure destination file's parent directory exists parent_dir = os.path.dirname(dst_path) if parent_dir: os.makedirs(parent_dir, exist_ok=True) # Get file stream resolved_src = self._safe_resolve_path(src_path) stream, stat = await asyncio.to_thread( self.container.get_archive, resolved_src ) # Create temporary directory to extract file with tempfile.TemporaryDirectory() as tmp_dir: # Write stream to temporary file tar_path = os.path.join(tmp_dir, "temp.tar") with open(tar_path, "wb") as f: for chunk in stream: f.write(chunk) # Extract file with tarfile.open(tar_path) as tar: members = tar.getmembers() if not members: raise FileNotFoundError(f"Source file is empty: {src_path}") # If destination is a directory, we should preserve relative path structure if os.path.isdir(dst_path): tar.extractall(dst_path) else: # If destination is a file, we only extract the source file's content if len(members) > 1: raise RuntimeError( f"Source path is a directory but destination is a file: {src_path}" ) with open(dst_path, "wb") as dst: src_file = tar.extractfile(members[0]) if src_file is None: raise RuntimeError( f"Failed to extract file: {src_path}" ) dst.write(src_file.read()) except docker.errors.NotFound: raise FileNotFoundError(f"Source file not found: {src_path}") except Exception as e: raise RuntimeError(f"Failed to copy file: {e}") async def copy_to(self, src_path: str, dst_path: str) -> None: """Copies a file to the container. Args: src_path: Source file path (host). dst_path: Destination path (container). Raises: FileNotFoundError: If source file does not exist. RuntimeError: If copy operation fails. """ try: if not os.path.exists(src_path): raise FileNotFoundError(f"Source file not found: {src_path}") # Create destination directory in container resolved_dst = self._safe_resolve_path(dst_path) container_dir = os.path.dirname(resolved_dst) if container_dir: await self.run_command(f"mkdir -p {container_dir}") # Create tar file to upload with tempfile.TemporaryDirectory() as tmp_dir: tar_path = os.path.join(tmp_dir, "temp.tar") with tarfile.open(tar_path, "w") as tar: # Handle directory source path if os.path.isdir(src_path): os.path.basename(src_path.rstrip("/")) for root, _, files in os.walk(src_path): for file in files: file_path = os.path.join(root, file) arcname = os.path.join( os.path.basename(dst_path), os.path.relpath(file_path, src_path), ) tar.add(file_path, arcname=arcname) else: # Add single file to tar tar.add(src_path, arcname=os.path.basename(dst_path)) # Read tar file content with open(tar_path, "rb") as f: data = f.read() # Upload to container await asyncio.to_thread( self.container.put_archive, os.path.dirname(resolved_dst) or "/", data, ) # Verify file was created successfully try: await self.run_command(f"test -e {resolved_dst}") except Exception: raise RuntimeError(f"Failed to verify file creation: {dst_path}") except FileNotFoundError: raise except Exception as e: raise RuntimeError(f"Failed to copy file: {e}") @staticmethod async def _create_tar_stream(name: str, content: bytes) -> io.BytesIO: """Creates a tar file stream. Args: name: Filename. content: File content. Returns: Tar file stream. """ tar_stream = io.BytesIO() with tarfile.open(fileobj=tar_stream, mode="w") as tar: tarinfo = tarfile.TarInfo(name=name) tarinfo.size = len(content) tar.addfile(tarinfo, io.BytesIO(content)) tar_stream.seek(0) return tar_stream @staticmethod async def _read_from_tar(tar_stream) -> bytes: """Reads file content from a tar stream. Args: tar_stream: Tar file stream. Returns: File content. Raises: RuntimeError: If read operation fails. """ with tempfile.NamedTemporaryFile() as tmp: for chunk in tar_stream: tmp.write(chunk) tmp.seek(0) with tarfile.open(fileobj=tmp) as tar: member = tar.next() if not member: raise RuntimeError("Empty tar archive") file_content = tar.extractfile(member) if not file_content: raise RuntimeError("Failed to extract file content") return file_content.read() async def cleanup(self) -> None: """Cleans up sandbox resources.""" errors = [] try: if self.terminal: try: await self.terminal.close() except Exception as e: errors.append(f"Terminal cleanup error: {e}") finally: self.terminal = None if self.container: try: await asyncio.to_thread(self.container.stop, timeout=5) except Exception as e: errors.append(f"Container stop error: {e}") try: await asyncio.to_thread(self.container.remove, force=True) except Exception as e: errors.append(f"Container remove error: {e}") finally: self.container = None except Exception as e: errors.append(f"General cleanup error: {e}") if errors: print(f"Warning: Errors during cleanup: {', '.join(errors)}") async def __aenter__(self) -> "DockerSandbox": """Async context manager entry.""" return await self.create() async def __aexit__(self, exc_type, exc_val, exc_tb) -> None: """Async context manager exit.""" await self.cleanup() ``` ## /app/sandbox/core/terminal.py ```py path="/app/sandbox/core/terminal.py" """ Asynchronous Docker Terminal This module provides asynchronous terminal functionality for Docker containers, allowing interactive command execution with timeout control. """ import asyncio import re import socket from typing import Dict, Optional, Tuple, Union import docker from docker import APIClient from docker.errors import APIError from docker.models.containers import Container class DockerSession: def __init__(self, container_id: str) -> None: """Initializes a Docker session. Args: container_id: ID of the Docker container. """ self.api = APIClient() self.container_id = container_id self.exec_id = None self.socket = None async def create(self, working_dir: str, env_vars: Dict[str, str]) -> None: """Creates an interactive session with the container. Args: working_dir: Working directory inside the container. env_vars: Environment variables to set. Raises: RuntimeError: If socket connection fails. """ startup_command = [ "bash", "-c", f"cd {working_dir} && " "PROMPT_COMMAND='' " "PS1='$ ' " "exec bash --norc --noprofile", ] exec_data = self.api.exec_create( self.container_id, startup_command, stdin=True, tty=True, stdout=True, stderr=True, privileged=True, user="root", environment={**env_vars, "TERM": "dumb", "PS1": "$ ", "PROMPT_COMMAND": ""}, ) self.exec_id = exec_data["Id"] socket_data = self.api.exec_start( self.exec_id, socket=True, tty=True, stream=True, demux=True ) if hasattr(socket_data, "_sock"): self.socket = socket_data._sock self.socket.setblocking(False) else: raise RuntimeError("Failed to get socket connection") await self._read_until_prompt() async def close(self) -> None: """Cleans up session resources. 1. Sends exit command 2. Closes socket connection 3. Checks and cleans up exec instance """ try: if self.socket: # Send exit command to close bash session try: self.socket.sendall(b"exit\n") # Allow time for command execution await asyncio.sleep(0.1) except: pass # Ignore sending errors, continue cleanup # Close socket connection try: self.socket.shutdown(socket.SHUT_RDWR) except: pass # Some platforms may not support shutdown self.socket.close() self.socket = None if self.exec_id: try: # Check exec instance status exec_inspect = self.api.exec_inspect(self.exec_id) if exec_inspect.get("Running", False): # If still running, wait for it to complete await asyncio.sleep(0.5) except: pass # Ignore inspection errors, continue cleanup self.exec_id = None except Exception as e: # Log error but don't raise, ensure cleanup continues print(f"Warning: Error during session cleanup: {e}") async def _read_until_prompt(self) -> str: """Reads output until prompt is found. Returns: String containing output up to the prompt. Raises: socket.error: If socket communication fails. """ buffer = b"" while b"$ " not in buffer: try: chunk = self.socket.recv(4096) if chunk: buffer += chunk except socket.error as e: if e.errno == socket.EWOULDBLOCK: await asyncio.sleep(0.1) continue raise return buffer.decode("utf-8") async def execute(self, command: str, timeout: Optional[int] = None) -> str: """Executes a command and returns cleaned output. Args: command: Shell command to execute. timeout: Maximum execution time in seconds. Returns: Command output as string with prompt markers removed. Raises: RuntimeError: If session not initialized or execution fails. TimeoutError: If command execution exceeds timeout. """ if not self.socket: raise RuntimeError("Session not initialized") try: # Sanitize command to prevent shell injection sanitized_command = self._sanitize_command(command) full_command = f"{sanitized_command}\necho $?\n" self.socket.sendall(full_command.encode()) async def read_output() -> str: buffer = b"" result_lines = [] command_sent = False while True: try: chunk = self.socket.recv(4096) if not chunk: break buffer += chunk lines = buffer.split(b"\n") buffer = lines[-1] lines = lines[:-1] for line in lines: line = line.rstrip(b"\r") if not command_sent: command_sent = True continue if line.strip() == b"echo $?" or line.strip().isdigit(): continue if line.strip(): result_lines.append(line) if buffer.endswith(b"$ "): break except socket.error as e: if e.errno == socket.EWOULDBLOCK: await asyncio.sleep(0.1) continue raise output = b"\n".join(result_lines).decode("utf-8") output = re.sub(r"\n\$ echo \$\$?.*$", "", output) return output if timeout: result = await asyncio.wait_for(read_output(), timeout) else: result = await read_output() return result.strip() except asyncio.TimeoutError: raise TimeoutError(f"Command execution timed out after {timeout} seconds") except Exception as e: raise RuntimeError(f"Failed to execute command: {e}") def _sanitize_command(self, command: str) -> str: """Sanitizes the command string to prevent shell injection. Args: command: Raw command string. Returns: Sanitized command string. Raises: ValueError: If command contains potentially dangerous patterns. """ # Additional checks for specific risky commands risky_commands = [ "rm -rf /", "rm -rf /*", "mkfs", "dd if=/dev/zero", ":(){:|:&};:", "chmod -R 777 /", "chown -R", ] for risky in risky_commands: if risky in command.lower(): raise ValueError( f"Command contains potentially dangerous operation: {risky}" ) return command class AsyncDockerizedTerminal: def __init__( self, container: Union[str, Container], working_dir: str = "/workspace", env_vars: Optional[Dict[str, str]] = None, default_timeout: int = 60, ) -> None: """Initializes an asynchronous terminal for Docker containers. Args: container: Docker container ID or Container object. working_dir: Working directory inside the container. env_vars: Environment variables to set. default_timeout: Default command execution timeout in seconds. """ self.client = docker.from_env() self.container = ( container if isinstance(container, Container) else self.client.containers.get(container) ) self.working_dir = working_dir self.env_vars = env_vars or {} self.default_timeout = default_timeout self.session = None async def init(self) -> None: """Initializes the terminal environment. Ensures working directory exists and creates an interactive session. Raises: RuntimeError: If initialization fails. """ await self._ensure_workdir() self.session = DockerSession(self.container.id) await self.session.create(self.working_dir, self.env_vars) async def _ensure_workdir(self) -> None: """Ensures working directory exists in container. Raises: RuntimeError: If directory creation fails. """ try: await self._exec_simple(f"mkdir -p {self.working_dir}") except APIError as e: raise RuntimeError(f"Failed to create working directory: {e}") async def _exec_simple(self, cmd: str) -> Tuple[int, str]: """Executes a simple command using Docker's exec_run. Args: cmd: Command to execute. Returns: Tuple of (exit_code, output). """ result = await asyncio.to_thread( self.container.exec_run, cmd, environment=self.env_vars ) return result.exit_code, result.output.decode("utf-8") async def run_command(self, cmd: str, timeout: Optional[int] = None) -> str: """Runs a command in the container with timeout. Args: cmd: Shell command to execute. timeout: Maximum execution time in seconds. Returns: Command output as string. Raises: RuntimeError: If terminal not initialized. """ if not self.session: raise RuntimeError("Terminal not initialized") return await self.session.execute(cmd, timeout=timeout or self.default_timeout) async def close(self) -> None: """Closes the terminal session.""" if self.session: await self.session.close() async def __aenter__(self) -> "AsyncDockerizedTerminal": """Async context manager entry.""" await self.init() return self async def __aexit__(self, exc_type, exc_val, exc_tb) -> None: """Async context manager exit.""" await self.close() ``` ## /app/schema.py ```py path="/app/schema.py" from enum import Enum from typing import Any, List, Literal, Optional, Union from pydantic import BaseModel, Field class Role(str, Enum): """Message role options""" SYSTEM = "system" USER = "user" ASSISTANT = "assistant" TOOL = "tool" ROLE_VALUES = tuple(role.value for role in Role) ROLE_TYPE = Literal[ROLE_VALUES] # type: ignore class ToolChoice(str, Enum): """Tool choice options""" NONE = "none" AUTO = "auto" REQUIRED = "required" TOOL_CHOICE_VALUES = tuple(choice.value for choice in ToolChoice) TOOL_CHOICE_TYPE = Literal[TOOL_CHOICE_VALUES] # type: ignore class AgentState(str, Enum): """Agent execution states""" IDLE = "IDLE" RUNNING = "RUNNING" FINISHED = "FINISHED" ERROR = "ERROR" class Function(BaseModel): name: str arguments: str class ToolCall(BaseModel): """Represents a tool/function call in a message""" id: str type: str = "function" function: Function class Message(BaseModel): """Represents a chat message in the conversation""" role: ROLE_TYPE = Field(...) # type: ignore content: Optional[str] = Field(default=None) tool_calls: Optional[List[ToolCall]] = Field(default=None) name: Optional[str] = Field(default=None) tool_call_id: Optional[str] = Field(default=None) base64_image: Optional[str] = Field(default=None) def __add__(self, other) -> List["Message"]: """支持 Message + list 或 Message + Message 的操作""" if isinstance(other, list): return [self] + other elif isinstance(other, Message): return [self, other] else: raise TypeError( f"unsupported operand type(s) for +: '{type(self).__name__}' and '{type(other).__name__}'" ) def __radd__(self, other) -> List["Message"]: """支持 list + Message 的操作""" if isinstance(other, list): return other + [self] else: raise TypeError( f"unsupported operand type(s) for +: '{type(other).__name__}' and '{type(self).__name__}'" ) def to_dict(self) -> dict: """Convert message to dictionary format""" message = {"role": self.role} if self.content is not None: message["content"] = self.content if self.tool_calls is not None: message["tool_calls"] = [tool_call.dict() for tool_call in self.tool_calls] if self.name is not None: message["name"] = self.name if self.tool_call_id is not None: message["tool_call_id"] = self.tool_call_id if self.base64_image is not None: message["base64_image"] = self.base64_image return message @classmethod def user_message( cls, content: str, base64_image: Optional[str] = None ) -> "Message": """Create a user message""" return cls(role=Role.USER, content=content, base64_image=base64_image) @classmethod def system_message(cls, content: str) -> "Message": """Create a system message""" return cls(role=Role.SYSTEM, content=content) @classmethod def assistant_message( cls, content: Optional[str] = None, base64_image: Optional[str] = None ) -> "Message": """Create an assistant message""" return cls(role=Role.ASSISTANT, content=content, base64_image=base64_image) @classmethod def tool_message( cls, content: str, name, tool_call_id: str, base64_image: Optional[str] = None ) -> "Message": """Create a tool message""" return cls( role=Role.TOOL, content=content, name=name, tool_call_id=tool_call_id, base64_image=base64_image, ) @classmethod def from_tool_calls( cls, tool_calls: List[Any], content: Union[str, List[str]] = "", base64_image: Optional[str] = None, **kwargs, ): """Create ToolCallsMessage from raw tool calls. Args: tool_calls: Raw tool calls from LLM content: Optional message content base64_image: Optional base64 encoded image """ formatted_calls = [ {"id": call.id, "function": call.function.model_dump(), "type": "function"} for call in tool_calls ] return cls( role=Role.ASSISTANT, content=content, tool_calls=formatted_calls, base64_image=base64_image, **kwargs, ) class Memory(BaseModel): messages: List[Message] = Field(default_factory=list) max_messages: int = Field(default=100) def add_message(self, message: Message) -> None: """Add a message to memory""" self.messages.append(message) # Optional: Implement message limit if len(self.messages) > self.max_messages: self.messages = self.messages[-self.max_messages :] def add_messages(self, messages: List[Message]) -> None: """Add multiple messages to memory""" self.messages.extend(messages) # Optional: Implement message limit if len(self.messages) > self.max_messages: self.messages = self.messages[-self.max_messages :] def clear(self) -> None: """Clear all messages""" self.messages.clear() def get_recent_messages(self, n: int) -> List[Message]: """Get n most recent messages""" return self.messages[-n:] def to_dict_list(self) -> List[dict]: """Convert messages to list of dicts""" return [msg.to_dict() for msg in self.messages] ``` ## /app/tool/__init__.py ```py path="/app/tool/__init__.py" from app.tool.base import BaseTool from app.tool.bash import Bash from app.tool.browser_use_tool import BrowserUseTool from app.tool.create_chat_completion import CreateChatCompletion from app.tool.planning import PlanningTool from app.tool.str_replace_editor import StrReplaceEditor from app.tool.terminate import Terminate from app.tool.tool_collection import ToolCollection from app.tool.web_search import WebSearch __all__ = [ "BaseTool", "Bash", "BrowserUseTool", "Terminate", "StrReplaceEditor", "WebSearch", "ToolCollection", "CreateChatCompletion", "PlanningTool", ] ``` ## /app/tool/ask_human.py ```py path="/app/tool/ask_human.py" from app.tool import BaseTool class AskHuman(BaseTool): """Add a tool to ask human for help.""" name: str = "ask_human" description: str = "Use this tool to ask human for help." parameters: str = { "type": "object", "properties": { "inquire": { "type": "string", "description": "The question you want to ask human.", } }, "required": ["inquire"], } async def execute(self, inquire: str) -> str: return input(f"""Bot: {inquire}\n\nYou: """).strip() ``` ## /app/tool/base.py ```py path="/app/tool/base.py" from abc import ABC, abstractmethod from typing import Any, Dict, Optional from pydantic import BaseModel, Field class BaseTool(ABC, BaseModel): name: str description: str parameters: Optional[dict] = None class Config: arbitrary_types_allowed = True async def __call__(self, **kwargs) -> Any: """Execute the tool with given parameters.""" return await self.execute(**kwargs) @abstractmethod async def execute(self, **kwargs) -> Any: """Execute the tool with given parameters.""" def to_param(self) -> Dict: """Convert tool to function call format.""" return { "type": "function", "function": { "name": self.name, "description": self.description, "parameters": self.parameters, }, } class ToolResult(BaseModel): """Represents the result of a tool execution.""" output: Any = Field(default=None) error: Optional[str] = Field(default=None) base64_image: Optional[str] = Field(default=None) system: Optional[str] = Field(default=None) class Config: arbitrary_types_allowed = True def __bool__(self): return any(getattr(self, field) for field in self.__fields__) def __add__(self, other: "ToolResult"): def combine_fields( field: Optional[str], other_field: Optional[str], concatenate: bool = True ): if field and other_field: if concatenate: return field + other_field raise ValueError("Cannot combine tool results") return field or other_field return ToolResult( output=combine_fields(self.output, other.output), error=combine_fields(self.error, other.error), base64_image=combine_fields(self.base64_image, other.base64_image, False), system=combine_fields(self.system, other.system), ) def __str__(self): return f"Error: {self.error}" if self.error else self.output def replace(self, **kwargs): """Returns a new ToolResult with the given fields replaced.""" # return self.copy(update=kwargs) return type(self)(**{**self.dict(), **kwargs}) class CLIResult(ToolResult): """A ToolResult that can be rendered as a CLI output.""" class ToolFailure(ToolResult): """A ToolResult that represents a failure.""" ``` The content has been capped at 50000 tokens, and files over NaN bytes have been omitted. The user could consider applying other filters to refine the result. The better and more specific the context, the better the LLM can follow instructions. If the context seems verbose, the user can refine the filter using uithub. Thank you for using https://uithub.com - Perfect LLM context for any GitHub repo.