``` ├── .gitignore ├── LICENSE ├── README.md ├── demo_gradio.py ├── diffusers_helper/ ├── bucket_tools.py ├── clip_vision.py ├── dit_common.py ├── gradio/ ├── progress_bar.py ├── hf_login.py ├── hunyuan.py ├── k_diffusion/ ├── uni_pc_fm.py ├── wrapper.py ├── memory.py ├── models/ ├── hunyuan_video_packed.py ├── pipelines/ ├── k_diffusion_hunyuan.py ├── thread_utils.py ├── utils.py ├── requirements.txt ``` ## /.gitignore ```gitignore path="/.gitignore" hf_download/ outputs/ repo/ # Byte-compiled / optimized / DLL files __pycache__/ *.py[cod] *$py.class # C extensions *.so # Distribution / packaging .Python build/ develop-eggs/ dist/ downloads/ eggs/ .eggs/ lib/ lib64/ parts/ sdist/ var/ wheels/ share/python-wheels/ *.egg-info/ .installed.cfg *.egg MANIFEST # PyInstaller # Usually these files are written by a python script from a template # before PyInstaller builds the exe, so as to inject date/other infos into it. *.manifest *.spec # Installer logs pip-log.txt pip-delete-this-directory.txt # Unit test / coverage reports htmlcov/ .tox/ .nox/ .coverage .coverage.* .cache nosetests.xml coverage.xml *.cover *.py,cover .hypothesis/ .pytest_cache/ cover/ # Translations *.mo *.pot # Django stuff: *.log local_settings.py db.sqlite3 db.sqlite3-journal # Flask stuff: instance/ .webassets-cache # Scrapy stuff: .scrapy # Sphinx documentation docs/_build/ # PyBuilder .pybuilder/ target/ # Jupyter Notebook .ipynb_checkpoints # IPython profile_default/ ipython_config.py # pyenv # For a library or package, you might want to ignore these files since the code is # intended to run in multiple environments; otherwise, check them in: # .python-version # pipenv # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. # However, in case of collaboration, if having platform-specific dependencies or dependencies # having no cross-platform support, pipenv may install dependencies that don't work, or not # install all needed dependencies. #Pipfile.lock # UV # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control. # This is especially recommended for binary packages to ensure reproducibility, and is more # commonly ignored for libraries. #uv.lock # poetry # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. # This is especially recommended for binary packages to ensure reproducibility, and is more # commonly ignored for libraries. # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control #poetry.lock # pdm # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. #pdm.lock # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it # in version control. # https://pdm.fming.dev/latest/usage/project/#working-with-version-control .pdm.toml .pdm-python .pdm-build/ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm __pypackages__/ # Celery stuff celerybeat-schedule celerybeat.pid # SageMath parsed files *.sage.py # Environments .env .venv env/ venv/ ENV/ env.bak/ venv.bak/ # Spyder project settings .spyderproject .spyproject # Rope project settings .ropeproject # mkdocs documentation /site # mypy .mypy_cache/ .dmypy.json dmypy.json # Pyre type checker .pyre/ # pytype static type analyzer .pytype/ # Cython debug symbols cython_debug/ # PyCharm # JetBrains specific template is maintained in a separate JetBrains.gitignore that can # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore # and can be added to the global gitignore or merged into this file. For a more nuclear # option (not recommended) you can uncomment the following to ignore the entire idea folder. .idea/ # Ruff stuff: .ruff_cache/ # PyPI configuration file .pypirc ``` ## /LICENSE ``` path="/LICENSE" Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ``` ## /README.md

# FramePack Official implementation and desktop software for ["Packing Input Frame Context in Next-Frame Prediction Models for Video Generation"](https://lllyasviel.github.io/frame_pack_gitpage/). Links: [**Paper**](https://arxiv.org/abs/2504.12626), [**Project Page**](https://lllyasviel.github.io/frame_pack_gitpage/) FramePack is a next-frame (next-frame-section) prediction neural network structure that generates videos progressively. FramePack compresses input contexts to a constant length so that the generation workload is invariant to video length. FramePack can process a very large number of frames with 13B models even on laptop GPUs. FramePack can be trained with a much larger batch size, similar to the batch size for image diffusion training. **Video diffusion, but feels like image diffusion.** # Notes Note that this GitHub repository is the only official FramePack website. We do not have any web services. All other websites are spam and fake, including but not limited to `framepack.co`, `frame_pack.co`, `framepack.net`, `frame_pack.net`, `framepack.ai`, `frame_pack.ai`, `framepack.pro`, `frame_pack.pro`, `framepack.cc`, `frame_pack.cc`,`framepackai.co`, `frame_pack_ai.co`, `framepackai.net`, `frame_pack_ai.net`, `framepackai.pro`, `frame_pack_ai.pro`, `framepackai.cc`, `frame_pack_ai.cc`, and so on. Again, they are all spam and fake. **Do not pay money or download files from any of those websites.** The team is on leave between April 21 and 30. PR merging will be delayed. # Requirements Note that this repo is a functional desktop software with minimal standalone high-quality sampling system and memory management. **Start with this repo before you try anything else!** Requirements: * Nvidia GPU in RTX 30XX, 40XX, 50XX series that supports fp16 and bf16. The GTX 10XX/20XX are not tested. * Linux or Windows operating system. * At least 6GB GPU memory. To generate 1-minute video (60 seconds) at 30fps (1800 frames) using 13B model, the minimal required GPU memory is 6GB. (Yes 6 GB, not a typo. Laptop GPUs are okay.) About speed, on my RTX 4090 desktop it generates at a speed of 2.5 seconds/frame (unoptimized) or 1.5 seconds/frame (teacache). On my laptops like 3070ti laptop or 3060 laptop, it is about 4x to 8x slower. [Troubleshoot if your speed is much slower than this.](https://github.com/lllyasviel/FramePack/issues/151#issuecomment-2817054649) In any case, you will directly see the generated frames since it is next-frame(-section) prediction. So you will get lots of visual feedback before the entire video is generated. # Installation **Windows**: [>>> Click Here to Download One-Click Package (CUDA 12.6 + Pytorch 2.6) <<<](https://github.com/lllyasviel/FramePack/releases/download/windows/framepack_cu126_torch26.7z) After you download, you uncompress, use `update.bat` to update, and use `run.bat` to run. Note that running `update.bat` is important, otherwise you may be using a previous version with potential bugs unfixed. ![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/c49bd60d-82bd-4086-9859-88d472582b94) Note that the models will be downloaded automatically. You will download more than 30GB from HuggingFace. **Linux**: We recommend having an independent Python 3.10. pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126 pip install -r requirements.txt To start the GUI, run: python demo_gradio.py Note that it supports `--share`, `--port`, `--server`, and so on. The software supports PyTorch attention, xformers, flash-attn, sage-attention. By default, it will just use PyTorch attention. You can install those attention kernels if you know how. For example, to install sage-attention (linux): pip install sageattention==1.0.6 However, you are highly recommended to first try without sage-attention since it will influence results, though the influence is minimal. # GUI ![ui](https://github.com/user-attachments/assets/8c5cdbb1-b80c-4b7e-ac27-83834ac24cc4) On the left you upload an image and write a prompt. On the right are the generated videos and latent previews. Because this is a next-frame-section prediction model, videos will be generated longer and longer. You will see the progress bar for each section and the latent preview for the next section. Note that the initial progress may be slower than later diffusion as the device may need some warmup. # Sanity Check Before trying your own inputs, we highly recommend going through the sanity check to find out if any hardware or software went wrong. Next-frame-section prediction models are very sensitive to subtle differences in noise and hardware. Usually, people will get slightly different results on different devices, but the results should look overall similar. In some cases, if possible, you'll get exactly the same results. ## Image-to-5-seconds Download this image: Copy this prompt: `The man dances energetically, leaping mid-air with fluid arm swings and quick footwork.` Set like this: (all default parameters, with teacache turned off) ![image](https://github.com/user-attachments/assets/0071fbb6-600c-4e0f-adc9-31980d540e9d) The result will be:
Video may be compressed by GitHub
**Important Note:** Again, this is a next-frame-section prediction model. This means you will generate videos frame-by-frame or section-by-section. **If you get a much shorter video in the UI, like a video with only 1 second, then it is totally expected.** You just need to wait. More sections will be generated to complete the video. ## Know the influence of TeaCache and Quantization Download this image: Copy this prompt: `The girl dances gracefully, with clear movements, full of charm.` Set like this: ![image](https://github.com/user-attachments/assets/4274207d-5180-4824-a552-d0d801933435) Turn off teacache: ![image](https://github.com/user-attachments/assets/53b309fb-667b-4aa8-96a1-f129c7a09ca6) You will get this:
Video may be compressed by GitHub
Now turn on teacache: ![image](https://github.com/user-attachments/assets/16ad047b-fbcc-4091-83dc-d46bea40708c) About 30% users will get this (the other 70% will get other random results depending on their hardware):
A typical worse result.
So you can see that teacache is not really lossless and sometimes can influence the result a lot. We recommend using teacache to try ideas and then using the full diffusion process to get high-quality results. This recommendation also applies to sage-attention, bnb quant, gguf, etc., etc. ## Image-to-1-minute `The girl dances gracefully, with clear movements, full of charm.` ![image](https://github.com/user-attachments/assets/8c34fcb2-288a-44b3-a33d-9d2324e30cbd) Set video length to 60 seconds: ![image](https://github.com/user-attachments/assets/5595a7ea-f74e-445e-ad5f-3fb5b4b21bee) If everything is in order you will get some result like this eventually. 60s version:
Video may be compressed by GitHub
6s version:
Video may be compressed by GitHub
# More Examples Many more examples are in [**Project Page**](https://lllyasviel.github.io/frame_pack_gitpage/). Below are some more examples that you may be interested in reproducing. --- `The girl dances gracefully, with clear movements, full of charm.` ![image](https://github.com/user-attachments/assets/0e98bfca-1d91-4b1d-b30f-4236b517c35e)
Video may be compressed by GitHub
--- `The girl suddenly took out a sign that said “cute” using right hand` ![image](https://github.com/user-attachments/assets/d51180e4-5537-4e25-a6c6-faecae28648a)
Video may be compressed by GitHub
--- `The girl skateboarding, repeating the endless spinning and dancing and jumping on a skateboard, with clear movements, full of charm.` ![image](https://github.com/user-attachments/assets/c2cfa835-b8e6-4c28-97f8-88f42da1ffdf)
Video may be compressed by GitHub
--- `The girl dances gracefully, with clear movements, full of charm.` ![image](https://github.com/user-attachments/assets/7412802a-ce44-4188-b1a4-cfe19f9c9118)
Video may be compressed by GitHub
--- `The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair.` ![image](https://github.com/user-attachments/assets/1dcf10a3-9747-4e77-a269-03a9379dd9af)
Video may be compressed by GitHub
--- `The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements.` ![image](https://github.com/user-attachments/assets/396f06bc-e399-4ac3-9766-8a42d4f8d383)
Video may be compressed by GitHub
--- `The young man writes intensely, flipping papers and adjusting his glasses with swift, focused movements.` ![image](https://github.com/user-attachments/assets/c4513c4b-997a-429b-b092-bb275a37b719)
Video may be compressed by GitHub
--- # Prompting Guideline Many people would ask how to write better prompts. Below is a ChatGPT template that I personally often use to get prompts: You are an assistant that writes short, motion-focused prompts for animating images. When the user sends an image, respond with a single, concise prompt describing visual motion (such as human activity, moving objects, or camera movements). Focus only on how the scene could come alive and become dynamic using brief phrases. Larger and more dynamic motions (like dancing, jumping, running, etc.) are preferred over smaller or more subtle ones (like standing still, sitting, etc.). Describe subject, then motion, then other things. For example: "The girl dances gracefully, with clear movements, full of charm." If there is something that can dance (like a man, girl, robot, etc.), then prefer to describe it as dancing. Stay in a loop: one image in, one motion prompt out. Do not explain, ask questions, or generate multiple options. You paste the instruct to ChatGPT and then feed it an image to get prompt like this: ![image](https://github.com/user-attachments/assets/586c53b9-0b8c-4c94-b1d3-d7e7c1a705c3) *The man dances powerfully, striking sharp poses and gliding smoothly across the reflective floor.* Usually this will give you a prompt that works well. You can also write prompts yourself. Concise prompts are usually preferred, for example: *The girl dances gracefully, with clear movements, full of charm.* *The man dances powerfully, with clear movements, full of energy.* and so on. # Cite @article{zhang2025framepack, title={Packing Input Frame Contexts in Next-Frame Prediction Models for Video Generation}, author={Lvmin Zhang and Maneesh Agrawala}, journal={Arxiv}, year={2025} } ## /demo_gradio.py ```py path="/demo_gradio.py" from diffusers_helper.hf_login import login import os os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))) import gradio as gr import torch import traceback import einops import safetensors.torch as sf import numpy as np import argparse import math from PIL import Image from diffusers import AutoencoderKLHunyuanVideo from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete from diffusers_helper.thread_utils import AsyncStream, async_run from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html from transformers import SiglipImageProcessor, SiglipVisionModel from diffusers_helper.clip_vision import hf_clip_vision_encode from diffusers_helper.bucket_tools import find_nearest_bucket parser = argparse.ArgumentParser() parser.add_argument('--share', action='store_true') parser.add_argument("--server", type=str, default='0.0.0.0') parser.add_argument("--port", type=int, required=False) parser.add_argument("--inbrowser", action='store_true') args = parser.parse_args() # for win desktop probably use --server 127.0.0.1 --inbrowser # For linux server probably use --server 127.0.0.1 or do not use any cmd flags print(args) free_mem_gb = get_cuda_free_memory_gb(gpu) high_vram = free_mem_gb > 60 print(f'Free VRAM {free_mem_gb} GB') print(f'High-VRAM Mode: {high_vram}') text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu() text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu() tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer') tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2') vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu() feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor') image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu() transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu() vae.eval() text_encoder.eval() text_encoder_2.eval() image_encoder.eval() transformer.eval() if not high_vram: vae.enable_slicing() vae.enable_tiling() transformer.high_quality_fp32_output_for_inference = True print('transformer.high_quality_fp32_output_for_inference = True') transformer.to(dtype=torch.bfloat16) vae.to(dtype=torch.float16) image_encoder.to(dtype=torch.float16) text_encoder.to(dtype=torch.float16) text_encoder_2.to(dtype=torch.float16) vae.requires_grad_(False) text_encoder.requires_grad_(False) text_encoder_2.requires_grad_(False) image_encoder.requires_grad_(False) transformer.requires_grad_(False) if not high_vram: # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster DynamicSwapInstaller.install_model(transformer, device=gpu) DynamicSwapInstaller.install_model(text_encoder, device=gpu) else: text_encoder.to(gpu) text_encoder_2.to(gpu) image_encoder.to(gpu) vae.to(gpu) transformer.to(gpu) stream = AsyncStream() outputs_folder = './outputs/' os.makedirs(outputs_folder, exist_ok=True) @torch.no_grad() def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf): total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) total_latent_sections = int(max(round(total_latent_sections), 1)) job_id = generate_timestamp() stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) try: # Clean GPU if not high_vram: unload_complete_models( text_encoder, text_encoder_2, image_encoder, vae, transformer ) # Text encoding stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))) if not high_vram: fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode. load_model_as_complete(text_encoder_2, target_device=gpu) llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) if cfg == 1: llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) else: llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) # Processing input image stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...')))) H, W, C = input_image.shape height, width = find_nearest_bucket(H, W, resolution=640) input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height) Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] # VAE encoding stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) if not high_vram: load_model_as_complete(vae, target_device=gpu) start_latent = vae_encode(input_image_pt, vae) # CLIP Vision stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) if not high_vram: load_model_as_complete(image_encoder, target_device=gpu) image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) image_encoder_last_hidden_state = image_encoder_output.last_hidden_state # Dtype llama_vec = llama_vec.to(transformer.dtype) llama_vec_n = llama_vec_n.to(transformer.dtype) clip_l_pooler = clip_l_pooler.to(transformer.dtype) clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) # Sampling stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))) rnd = torch.Generator("cpu").manual_seed(seed) num_frames = latent_window_size * 4 - 3 history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu() history_pixels = None total_generated_latent_frames = 0 latent_paddings = reversed(range(total_latent_sections)) if total_latent_sections > 4: # In theory the latent_paddings should follow the above sequence, but it seems that duplicating some # items looks better than expanding it when total_latent_sections > 4 # One can try to remove below trick and just # use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0] for latent_padding in latent_paddings: is_last_section = latent_padding == 0 latent_padding_size = latent_padding * latent_window_size if stream.input_queue.top() == 'end': stream.output_queue.push(('end', None)) return print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}') indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0) clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1) clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1) clean_latents_pre = start_latent.to(history_latents) clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2) clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2) if not high_vram: unload_complete_models() move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation) if use_teacache: transformer.initialize_teacache(enable_teacache=True, num_steps=steps) else: transformer.initialize_teacache(enable_teacache=False) def callback(d): preview = d['denoised'] preview = vae_decode_fake(preview) preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8) preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c') if stream.input_queue.top() == 'end': stream.output_queue.push(('end', None)) raise KeyboardInterrupt('User ends the task.') current_step = d['i'] + 1 percentage = int(100.0 * current_step / steps) hint = f'Sampling {current_step}/{steps}' desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...' stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint)))) return generated_latents = sample_hunyuan( transformer=transformer, sampler='unipc', width=width, height=height, frames=num_frames, real_guidance_scale=cfg, distilled_guidance_scale=gs, guidance_rescale=rs, # shift=3.0, num_inference_steps=steps, generator=rnd, prompt_embeds=llama_vec, prompt_embeds_mask=llama_attention_mask, prompt_poolers=clip_l_pooler, negative_prompt_embeds=llama_vec_n, negative_prompt_embeds_mask=llama_attention_mask_n, negative_prompt_poolers=clip_l_pooler_n, device=gpu, dtype=torch.bfloat16, image_embeddings=image_encoder_last_hidden_state, latent_indices=latent_indices, clean_latents=clean_latents, clean_latent_indices=clean_latent_indices, clean_latents_2x=clean_latents_2x, clean_latent_2x_indices=clean_latent_2x_indices, clean_latents_4x=clean_latents_4x, clean_latent_4x_indices=clean_latent_4x_indices, callback=callback, ) if is_last_section: generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2) total_generated_latent_frames += int(generated_latents.shape[2]) history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2) if not high_vram: offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8) load_model_as_complete(vae, target_device=gpu) real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :] if history_pixels is None: history_pixels = vae_decode(real_history_latents, vae).cpu() else: section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2) overlapped_frames = latent_window_size * 4 - 3 current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu() history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames) if not high_vram: unload_complete_models() output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf) print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}') stream.output_queue.push(('file', output_filename)) if is_last_section: break except: traceback.print_exc() if not high_vram: unload_complete_models( text_encoder, text_encoder_2, image_encoder, vae, transformer ) stream.output_queue.push(('end', None)) return def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf): global stream assert input_image is not None, 'No input image!' yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) stream = AsyncStream() async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf) output_filename = None while True: flag, data = stream.output_queue.next() if flag == 'file': output_filename = data yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True) if flag == 'progress': preview, desc, html = data yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) if flag == 'end': yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) break def end_process(): stream.input_queue.push('end') quick_prompts = [ 'The girl dances gracefully, with clear movements, full of charm.', 'A character doing some simple body movements.', ] quick_prompts = [[x] for x in quick_prompts] css = make_progress_bar_css() block = gr.Blocks(css=css).queue() with block: gr.Markdown('# FramePack') with gr.Row(): with gr.Column(): input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320) prompt = gr.Textbox(label="Prompt", value='') example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt]) example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False) with gr.Row(): start_button = gr.Button(value="Start Generation") end_button = gr.Button(value="End Generation", interactive=False) with gr.Group(): use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.') n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) # Not used seed = gr.Number(label="Seed", value=31337, precision=0) total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=120, value=5, step=0.1) latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False) # Should not change steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.') cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) # Should not change gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.') rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.") mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ") with gr.Column(): preview_image = gr.Image(label="Next Latents", height=200, visible=False) result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True) gr.Markdown('Note that the ending actions will be generated before the starting actions due to the inverted sampling. If the starting action is not in the video, you just need to wait, and it will be generated later.') progress_desc = gr.Markdown('', elem_classes='no-generating-animation') progress_bar = gr.HTML('', elem_classes='no-generating-animation') gr.HTML('
Share your results and find ideas at the FramePack Twitter (X) thread
') ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf] start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]) end_button.click(fn=end_process) block.launch( server_name=args.server, server_port=args.port, share=args.share, inbrowser=args.inbrowser, ) ``` ## /diffusers_helper/bucket_tools.py ```py path="/diffusers_helper/bucket_tools.py" bucket_options = { 640: [ (416, 960), (448, 864), (480, 832), (512, 768), (544, 704), (576, 672), (608, 640), (640, 608), (672, 576), (704, 544), (768, 512), (832, 480), (864, 448), (960, 416), ], } def find_nearest_bucket(h, w, resolution=640): min_metric = float('inf') best_bucket = None for (bucket_h, bucket_w) in bucket_options[resolution]: metric = abs(h * bucket_w - w * bucket_h) if metric <= min_metric: min_metric = metric best_bucket = (bucket_h, bucket_w) return best_bucket ``` ## /diffusers_helper/clip_vision.py ```py path="/diffusers_helper/clip_vision.py" import numpy as np def hf_clip_vision_encode(image, feature_extractor, image_encoder): assert isinstance(image, np.ndarray) assert image.ndim == 3 and image.shape[2] == 3 assert image.dtype == np.uint8 preprocessed = feature_extractor.preprocess(images=image, return_tensors="pt").to(device=image_encoder.device, dtype=image_encoder.dtype) image_encoder_output = image_encoder(**preprocessed) return image_encoder_output ``` ## /diffusers_helper/dit_common.py ```py path="/diffusers_helper/dit_common.py" import torch import accelerate.accelerator from diffusers.models.normalization import RMSNorm, LayerNorm, FP32LayerNorm, AdaLayerNormContinuous accelerate.accelerator.convert_outputs_to_fp32 = lambda x: x def LayerNorm_forward(self, x): return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps).to(x) LayerNorm.forward = LayerNorm_forward torch.nn.LayerNorm.forward = LayerNorm_forward def FP32LayerNorm_forward(self, x): origin_dtype = x.dtype return torch.nn.functional.layer_norm( x.float(), self.normalized_shape, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ).to(origin_dtype) FP32LayerNorm.forward = FP32LayerNorm_forward def RMSNorm_forward(self, hidden_states): input_dtype = hidden_states.dtype variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.eps) if self.weight is None: return hidden_states.to(input_dtype) return hidden_states.to(input_dtype) * self.weight.to(input_dtype) RMSNorm.forward = RMSNorm_forward def AdaLayerNormContinuous_forward(self, x, conditioning_embedding): emb = self.linear(self.silu(conditioning_embedding)) scale, shift = emb.chunk(2, dim=1) x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :] return x AdaLayerNormContinuous.forward = AdaLayerNormContinuous_forward ``` ## /diffusers_helper/gradio/progress_bar.py ```py path="/diffusers_helper/gradio/progress_bar.py" progress_html = '''
*text*
''' css = ''' .loader-container { display: flex; /* Use flex to align items horizontally */ align-items: center; /* Center items vertically within the container */ white-space: nowrap; /* Prevent line breaks within the container */ } .loader { border: 8px solid #f3f3f3; /* Light grey */ border-top: 8px solid #3498db; /* Blue */ border-radius: 50%; width: 30px; height: 30px; animation: spin 2s linear infinite; } @keyframes spin { 0% { transform: rotate(0deg); } 100% { transform: rotate(360deg); } } /* Style the progress bar */ progress { appearance: none; /* Remove default styling */ height: 20px; /* Set the height of the progress bar */ border-radius: 5px; /* Round the corners of the progress bar */ background-color: #f3f3f3; /* Light grey background */ width: 100%; vertical-align: middle !important; } /* Style the progress bar container */ .progress-container { margin-left: 20px; margin-right: 20px; flex-grow: 1; /* Allow the progress container to take up remaining space */ } /* Set the color of the progress bar fill */ progress::-webkit-progress-value { background-color: #3498db; /* Blue color for the fill */ } progress::-moz-progress-bar { background-color: #3498db; /* Blue color for the fill in Firefox */ } /* Style the text on the progress bar */ progress::after { content: attr(value '%'); /* Display the progress value followed by '%' */ position: absolute; top: 50%; left: 50%; transform: translate(-50%, -50%); color: white; /* Set text color */ font-size: 14px; /* Set font size */ } /* Style other texts */ .loader-container > span { margin-left: 5px; /* Add spacing between the progress bar and the text */ } .no-generating-animation > .generating { display: none !important; } ''' def make_progress_bar_html(number, text): return progress_html.replace('*number*', str(number)).replace('*text*', text) def make_progress_bar_css(): return css ``` ## /diffusers_helper/hf_login.py ```py path="/diffusers_helper/hf_login.py" import os def login(token): from huggingface_hub import login import time while True: try: login(token) print('HF login ok.') break except Exception as e: print(f'HF login failed: {e}. Retrying') time.sleep(0.5) hf_token = os.environ.get('HF_TOKEN', None) if hf_token is not None: login(hf_token) ``` ## /diffusers_helper/hunyuan.py ```py path="/diffusers_helper/hunyuan.py" import torch from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE from diffusers_helper.utils import crop_or_pad_yield_mask @torch.no_grad() def encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, max_length=256): assert isinstance(prompt, str) prompt = [prompt] # LLAMA prompt_llama = [DEFAULT_PROMPT_TEMPLATE["template"].format(p) for p in prompt] crop_start = DEFAULT_PROMPT_TEMPLATE["crop_start"] llama_inputs = tokenizer( prompt_llama, padding="max_length", max_length=max_length + crop_start, truncation=True, return_tensors="pt", return_length=False, return_overflowing_tokens=False, return_attention_mask=True, ) llama_input_ids = llama_inputs.input_ids.to(text_encoder.device) llama_attention_mask = llama_inputs.attention_mask.to(text_encoder.device) llama_attention_length = int(llama_attention_mask.sum()) llama_outputs = text_encoder( input_ids=llama_input_ids, attention_mask=llama_attention_mask, output_hidden_states=True, ) llama_vec = llama_outputs.hidden_states[-3][:, crop_start:llama_attention_length] # llama_vec_remaining = llama_outputs.hidden_states[-3][:, llama_attention_length:] llama_attention_mask = llama_attention_mask[:, crop_start:llama_attention_length] assert torch.all(llama_attention_mask.bool()) # CLIP clip_l_input_ids = tokenizer_2( prompt, padding="max_length", max_length=77, truncation=True, return_overflowing_tokens=False, return_length=False, return_tensors="pt", ).input_ids clip_l_pooler = text_encoder_2(clip_l_input_ids.to(text_encoder_2.device), output_hidden_states=False).pooler_output return llama_vec, clip_l_pooler @torch.no_grad() def vae_decode_fake(latents): latent_rgb_factors = [ [-0.0395, -0.0331, 0.0445], [0.0696, 0.0795, 0.0518], [0.0135, -0.0945, -0.0282], [0.0108, -0.0250, -0.0765], [-0.0209, 0.0032, 0.0224], [-0.0804, -0.0254, -0.0639], [-0.0991, 0.0271, -0.0669], [-0.0646, -0.0422, -0.0400], [-0.0696, -0.0595, -0.0894], [-0.0799, -0.0208, -0.0375], [0.1166, 0.1627, 0.0962], [0.1165, 0.0432, 0.0407], [-0.2315, -0.1920, -0.1355], [-0.0270, 0.0401, -0.0821], [-0.0616, -0.0997, -0.0727], [0.0249, -0.0469, -0.1703] ] # From comfyui latent_rgb_factors_bias = [0.0259, -0.0192, -0.0761] weight = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)[:, :, None, None, None] bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype) images = torch.nn.functional.conv3d(latents, weight, bias=bias, stride=1, padding=0, dilation=1, groups=1) images = images.clamp(0.0, 1.0) return images @torch.no_grad() def vae_decode(latents, vae, image_mode=False): latents = latents / vae.config.scaling_factor if not image_mode: image = vae.decode(latents.to(device=vae.device, dtype=vae.dtype)).sample else: latents = latents.to(device=vae.device, dtype=vae.dtype).unbind(2) image = [vae.decode(l.unsqueeze(2)).sample for l in latents] image = torch.cat(image, dim=2) return image @torch.no_grad() def vae_encode(image, vae): latents = vae.encode(image.to(device=vae.device, dtype=vae.dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor return latents ``` ## /diffusers_helper/k_diffusion/uni_pc_fm.py ```py path="/diffusers_helper/k_diffusion/uni_pc_fm.py" # Better Flow Matching UniPC by Lvmin Zhang # (c) 2025 # CC BY-SA 4.0 # Attribution-ShareAlike 4.0 International Licence import torch from tqdm.auto import trange def expand_dims(v, dims): return v[(...,) + (None,) * (dims - 1)] class FlowMatchUniPC: def __init__(self, model, extra_args, variant='bh1'): self.model = model self.variant = variant self.extra_args = extra_args def model_fn(self, x, t): return self.model(x, t, **self.extra_args) def update_fn(self, x, model_prev_list, t_prev_list, t, order): assert order <= len(model_prev_list) dims = x.dim() t_prev_0 = t_prev_list[-1] lambda_prev_0 = - torch.log(t_prev_0) lambda_t = - torch.log(t) model_prev_0 = model_prev_list[-1] h = lambda_t - lambda_prev_0 rks = [] D1s = [] for i in range(1, order): t_prev_i = t_prev_list[-(i + 1)] model_prev_i = model_prev_list[-(i + 1)] lambda_prev_i = - torch.log(t_prev_i) rk = ((lambda_prev_i - lambda_prev_0) / h)[0] rks.append(rk) D1s.append((model_prev_i - model_prev_0) / rk) rks.append(1.) rks = torch.tensor(rks, device=x.device) R = [] b = [] hh = -h[0] h_phi_1 = torch.expm1(hh) h_phi_k = h_phi_1 / hh - 1 factorial_i = 1 if self.variant == 'bh1': B_h = hh elif self.variant == 'bh2': B_h = torch.expm1(hh) else: raise NotImplementedError('Bad variant!') for i in range(1, order + 1): R.append(torch.pow(rks, i - 1)) b.append(h_phi_k * factorial_i / B_h) factorial_i *= (i + 1) h_phi_k = h_phi_k / hh - 1 / factorial_i R = torch.stack(R) b = torch.tensor(b, device=x.device) use_predictor = len(D1s) > 0 if use_predictor: D1s = torch.stack(D1s, dim=1) if order == 2: rhos_p = torch.tensor([0.5], device=b.device) else: rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]) else: D1s = None rhos_p = None if order == 1: rhos_c = torch.tensor([0.5], device=b.device) else: rhos_c = torch.linalg.solve(R, b) x_t_ = expand_dims(t / t_prev_0, dims) * x - expand_dims(h_phi_1, dims) * model_prev_0 if use_predictor: pred_res = torch.tensordot(D1s, rhos_p, dims=([1], [0])) else: pred_res = 0 x_t = x_t_ - expand_dims(B_h, dims) * pred_res model_t = self.model_fn(x_t, t) if D1s is not None: corr_res = torch.tensordot(D1s, rhos_c[:-1], dims=([1], [0])) else: corr_res = 0 D1_t = (model_t - model_prev_0) x_t = x_t_ - expand_dims(B_h, dims) * (corr_res + rhos_c[-1] * D1_t) return x_t, model_t def sample(self, x, sigmas, callback=None, disable_pbar=False): order = min(3, len(sigmas) - 2) model_prev_list, t_prev_list = [], [] for i in trange(len(sigmas) - 1, disable=disable_pbar): vec_t = sigmas[i].expand(x.shape[0]) if i == 0: model_prev_list = [self.model_fn(x, vec_t)] t_prev_list = [vec_t] elif i < order: init_order = i x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, init_order) model_prev_list.append(model_x) t_prev_list.append(vec_t) else: x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, order) model_prev_list.append(model_x) t_prev_list.append(vec_t) model_prev_list = model_prev_list[-order:] t_prev_list = t_prev_list[-order:] if callback is not None: callback({'x': x, 'i': i, 'denoised': model_prev_list[-1]}) return model_prev_list[-1] def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'): assert variant in ['bh1', 'bh2'] return FlowMatchUniPC(model, extra_args=extra_args, variant=variant).sample(noise, sigmas=sigmas, callback=callback, disable_pbar=disable) ``` ## /diffusers_helper/k_diffusion/wrapper.py ```py path="/diffusers_helper/k_diffusion/wrapper.py" import torch def append_dims(x, target_dims): return x[(...,) + (None,) * (target_dims - x.ndim)] def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=1.0): if guidance_rescale == 0: return noise_cfg std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) noise_pred_rescaled = noise_cfg * (std_text / std_cfg) noise_cfg = guidance_rescale * noise_pred_rescaled + (1.0 - guidance_rescale) * noise_cfg return noise_cfg def fm_wrapper(transformer, t_scale=1000.0): def k_model(x, sigma, **extra_args): dtype = extra_args['dtype'] cfg_scale = extra_args['cfg_scale'] cfg_rescale = extra_args['cfg_rescale'] concat_latent = extra_args['concat_latent'] original_dtype = x.dtype sigma = sigma.float() x = x.to(dtype) timestep = (sigma * t_scale).to(dtype) if concat_latent is None: hidden_states = x else: hidden_states = torch.cat([x, concat_latent.to(x)], dim=1) pred_positive = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['positive'])[0].float() if cfg_scale == 1.0: pred_negative = torch.zeros_like(pred_positive) else: pred_negative = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['negative'])[0].float() pred_cfg = pred_negative + cfg_scale * (pred_positive - pred_negative) pred = rescale_noise_cfg(pred_cfg, pred_positive, guidance_rescale=cfg_rescale) x0 = x.float() - pred.float() * append_dims(sigma, x.ndim) return x0.to(dtype=original_dtype) return k_model ``` ## /diffusers_helper/memory.py ```py path="/diffusers_helper/memory.py" # By lllyasviel import torch cpu = torch.device('cpu') gpu = torch.device(f'cuda:{torch.cuda.current_device()}') gpu_complete_modules = [] class DynamicSwapInstaller: @staticmethod def _install_module(module: torch.nn.Module, **kwargs): original_class = module.__class__ module.__dict__['forge_backup_original_class'] = original_class def hacked_get_attr(self, name: str): if '_parameters' in self.__dict__: _parameters = self.__dict__['_parameters'] if name in _parameters: p = _parameters[name] if p is None: return None if p.__class__ == torch.nn.Parameter: return torch.nn.Parameter(p.to(**kwargs), requires_grad=p.requires_grad) else: return p.to(**kwargs) if '_buffers' in self.__dict__: _buffers = self.__dict__['_buffers'] if name in _buffers: return _buffers[name].to(**kwargs) return super(original_class, self).__getattr__(name) module.__class__ = type('DynamicSwap_' + original_class.__name__, (original_class,), { '__getattr__': hacked_get_attr, }) return @staticmethod def _uninstall_module(module: torch.nn.Module): if 'forge_backup_original_class' in module.__dict__: module.__class__ = module.__dict__.pop('forge_backup_original_class') return @staticmethod def install_model(model: torch.nn.Module, **kwargs): for m in model.modules(): DynamicSwapInstaller._install_module(m, **kwargs) return @staticmethod def uninstall_model(model: torch.nn.Module): for m in model.modules(): DynamicSwapInstaller._uninstall_module(m) return def fake_diffusers_current_device(model: torch.nn.Module, target_device: torch.device): if hasattr(model, 'scale_shift_table'): model.scale_shift_table.data = model.scale_shift_table.data.to(target_device) return for k, p in model.named_modules(): if hasattr(p, 'weight'): p.to(target_device) return def get_cuda_free_memory_gb(device=None): if device is None: device = gpu memory_stats = torch.cuda.memory_stats(device) bytes_active = memory_stats['active_bytes.all.current'] bytes_reserved = memory_stats['reserved_bytes.all.current'] bytes_free_cuda, _ = torch.cuda.mem_get_info(device) bytes_inactive_reserved = bytes_reserved - bytes_active bytes_total_available = bytes_free_cuda + bytes_inactive_reserved return bytes_total_available / (1024 ** 3) def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0): print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB') for m in model.modules(): if get_cuda_free_memory_gb(target_device) <= preserved_memory_gb: torch.cuda.empty_cache() return if hasattr(m, 'weight'): m.to(device=target_device) model.to(device=target_device) torch.cuda.empty_cache() return def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0): print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB') for m in model.modules(): if get_cuda_free_memory_gb(target_device) >= preserved_memory_gb: torch.cuda.empty_cache() return if hasattr(m, 'weight'): m.to(device=cpu) model.to(device=cpu) torch.cuda.empty_cache() return def unload_complete_models(*args): for m in gpu_complete_modules + list(args): m.to(device=cpu) print(f'Unloaded {m.__class__.__name__} as complete.') gpu_complete_modules.clear() torch.cuda.empty_cache() return def load_model_as_complete(model, target_device, unload=True): if unload: unload_complete_models() model.to(device=target_device) print(f'Loaded {model.__class__.__name__} to {target_device} as complete.') gpu_complete_modules.append(model) return ``` ## /diffusers_helper/models/hunyuan_video_packed.py ```py path="/diffusers_helper/models/hunyuan_video_packed.py" from typing import Any, Dict, List, Optional, Tuple, Union import torch import einops import torch.nn as nn import numpy as np from diffusers.loaders import FromOriginalModelMixin from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import PeftAdapterMixin from diffusers.utils import logging from diffusers.models.attention import FeedForward from diffusers.models.attention_processor import Attention from diffusers.models.embeddings import TimestepEmbedding, Timesteps, PixArtAlphaTextProjection from diffusers.models.modeling_outputs import Transformer2DModelOutput from diffusers.models.modeling_utils import ModelMixin from diffusers_helper.dit_common import LayerNorm from diffusers_helper.utils import zero_module enabled_backends = [] if torch.backends.cuda.flash_sdp_enabled(): enabled_backends.append("flash") if torch.backends.cuda.math_sdp_enabled(): enabled_backends.append("math") if torch.backends.cuda.mem_efficient_sdp_enabled(): enabled_backends.append("mem_efficient") if torch.backends.cuda.cudnn_sdp_enabled(): enabled_backends.append("cudnn") print("Currently enabled native sdp backends:", enabled_backends) try: # raise NotImplementedError from xformers.ops import memory_efficient_attention as xformers_attn_func print('Xformers is installed!') except: print('Xformers is not installed!') xformers_attn_func = None try: # raise NotImplementedError from flash_attn import flash_attn_varlen_func, flash_attn_func print('Flash Attn is installed!') except: print('Flash Attn is not installed!') flash_attn_varlen_func = None flash_attn_func = None try: # raise NotImplementedError from sageattention import sageattn_varlen, sageattn print('Sage Attn is installed!') except: print('Sage Attn is not installed!') sageattn_varlen = None sageattn = None logger = logging.get_logger(__name__) # pylint: disable=invalid-name def pad_for_3d_conv(x, kernel_size): b, c, t, h, w = x.shape pt, ph, pw = kernel_size pad_t = (pt - (t % pt)) % pt pad_h = (ph - (h % ph)) % ph pad_w = (pw - (w % pw)) % pw return torch.nn.functional.pad(x, (0, pad_w, 0, pad_h, 0, pad_t), mode='replicate') def center_down_sample_3d(x, kernel_size): # pt, ph, pw = kernel_size # cp = (pt * ph * pw) // 2 # xp = einops.rearrange(x, 'b c (t pt) (h ph) (w pw) -> (pt ph pw) b c t h w', pt=pt, ph=ph, pw=pw) # xc = xp[cp] # return xc return torch.nn.functional.avg_pool3d(x, kernel_size, stride=kernel_size) def get_cu_seqlens(text_mask, img_len): batch_size = text_mask.shape[0] text_len = text_mask.sum(dim=1) max_len = text_mask.shape[1] + img_len cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda") for i in range(batch_size): s = text_len[i] + img_len s1 = i * max_len + s s2 = (i + 1) * max_len cu_seqlens[2 * i + 1] = s1 cu_seqlens[2 * i + 2] = s2 return cu_seqlens def apply_rotary_emb_transposed(x, freqs_cis): cos, sin = freqs_cis.unsqueeze(-2).chunk(2, dim=-1) x_real, x_imag = x.unflatten(-1, (-1, 2)).unbind(-1) x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) out = x.float() * cos + x_rotated.float() * sin out = out.to(x) return out def attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv): if cu_seqlens_q is None and cu_seqlens_kv is None and max_seqlen_q is None and max_seqlen_kv is None: if sageattn is not None: x = sageattn(q, k, v, tensor_layout='NHD') return x if flash_attn_func is not None: x = flash_attn_func(q, k, v) return x if xformers_attn_func is not None: x = xformers_attn_func(q, k, v) return x x = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).transpose(1, 2) return x batch_size = q.shape[0] q = q.view(q.shape[0] * q.shape[1], *q.shape[2:]) k = k.view(k.shape[0] * k.shape[1], *k.shape[2:]) v = v.view(v.shape[0] * v.shape[1], *v.shape[2:]) if sageattn_varlen is not None: x = sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv) elif flash_attn_varlen_func is not None: x = flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv) else: raise NotImplementedError('No Attn Installed!') x = x.view(batch_size, max_seqlen_q, *x.shape[2:]) return x class HunyuanAttnProcessorFlashAttnDouble: def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb): cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) query = query.unflatten(2, (attn.heads, -1)) key = key.unflatten(2, (attn.heads, -1)) value = value.unflatten(2, (attn.heads, -1)) query = attn.norm_q(query) key = attn.norm_k(key) query = apply_rotary_emb_transposed(query, image_rotary_emb) key = apply_rotary_emb_transposed(key, image_rotary_emb) encoder_query = attn.add_q_proj(encoder_hidden_states) encoder_key = attn.add_k_proj(encoder_hidden_states) encoder_value = attn.add_v_proj(encoder_hidden_states) encoder_query = encoder_query.unflatten(2, (attn.heads, -1)) encoder_key = encoder_key.unflatten(2, (attn.heads, -1)) encoder_value = encoder_value.unflatten(2, (attn.heads, -1)) encoder_query = attn.norm_added_q(encoder_query) encoder_key = attn.norm_added_k(encoder_key) query = torch.cat([query, encoder_query], dim=1) key = torch.cat([key, encoder_key], dim=1) value = torch.cat([value, encoder_value], dim=1) hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv) hidden_states = hidden_states.flatten(-2) txt_length = encoder_hidden_states.shape[1] hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:] hidden_states = attn.to_out[0](hidden_states) hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states class HunyuanAttnProcessorFlashAttnSingle: def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb): cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) query = query.unflatten(2, (attn.heads, -1)) key = key.unflatten(2, (attn.heads, -1)) value = value.unflatten(2, (attn.heads, -1)) query = attn.norm_q(query) key = attn.norm_k(key) txt_length = encoder_hidden_states.shape[1] query = torch.cat([apply_rotary_emb_transposed(query[:, :-txt_length], image_rotary_emb), query[:, -txt_length:]], dim=1) key = torch.cat([apply_rotary_emb_transposed(key[:, :-txt_length], image_rotary_emb), key[:, -txt_length:]], dim=1) hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv) hidden_states = hidden_states.flatten(-2) hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:] return hidden_states, encoder_hidden_states class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module): def __init__(self, embedding_dim, pooled_projection_dim): super().__init__() self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") def forward(self, timestep, guidance, pooled_projection): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) guidance_proj = self.time_proj(guidance) guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) time_guidance_emb = timesteps_emb + guidance_emb pooled_projections = self.text_embedder(pooled_projection) conditioning = time_guidance_emb + pooled_projections return conditioning class CombinedTimestepTextProjEmbeddings(nn.Module): def __init__(self, embedding_dim, pooled_projection_dim): super().__init__() self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") def forward(self, timestep, pooled_projection): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) pooled_projections = self.text_embedder(pooled_projection) conditioning = timesteps_emb + pooled_projections return conditioning class HunyuanVideoAdaNorm(nn.Module): def __init__(self, in_features: int, out_features: Optional[int] = None) -> None: super().__init__() out_features = out_features or 2 * in_features self.linear = nn.Linear(in_features, out_features) self.nonlinearity = nn.SiLU() def forward( self, temb: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: temb = self.linear(self.nonlinearity(temb)) gate_msa, gate_mlp = temb.chunk(2, dim=-1) gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1) return gate_msa, gate_mlp class HunyuanVideoIndividualTokenRefinerBlock(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, mlp_width_ratio: str = 4.0, mlp_drop_rate: float = 0.0, attention_bias: bool = True, ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim self.norm1 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) self.attn = Attention( query_dim=hidden_size, cross_attention_dim=None, heads=num_attention_heads, dim_head=attention_head_dim, bias=attention_bias, ) self.norm2 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate) self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size) def forward( self, hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: norm_hidden_states = self.norm1(hidden_states) attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=None, attention_mask=attention_mask, ) gate_msa, gate_mlp = self.norm_out(temb) hidden_states = hidden_states + attn_output * gate_msa ff_output = self.ff(self.norm2(hidden_states)) hidden_states = hidden_states + ff_output * gate_mlp return hidden_states class HunyuanVideoIndividualTokenRefiner(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, num_layers: int, mlp_width_ratio: float = 4.0, mlp_drop_rate: float = 0.0, attention_bias: bool = True, ) -> None: super().__init__() self.refiner_blocks = nn.ModuleList( [ HunyuanVideoIndividualTokenRefinerBlock( num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, mlp_width_ratio=mlp_width_ratio, mlp_drop_rate=mlp_drop_rate, attention_bias=attention_bias, ) for _ in range(num_layers) ] ) def forward( self, hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, ) -> None: self_attn_mask = None if attention_mask is not None: batch_size = attention_mask.shape[0] seq_len = attention_mask.shape[1] attention_mask = attention_mask.to(hidden_states.device).bool() self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1) self_attn_mask_2 = self_attn_mask_1.transpose(2, 3) self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool() self_attn_mask[:, :, :, 0] = True for block in self.refiner_blocks: hidden_states = block(hidden_states, temb, self_attn_mask) return hidden_states class HunyuanVideoTokenRefiner(nn.Module): def __init__( self, in_channels: int, num_attention_heads: int, attention_head_dim: int, num_layers: int, mlp_ratio: float = 4.0, mlp_drop_rate: float = 0.0, attention_bias: bool = True, ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim self.time_text_embed = CombinedTimestepTextProjEmbeddings( embedding_dim=hidden_size, pooled_projection_dim=in_channels ) self.proj_in = nn.Linear(in_channels, hidden_size, bias=True) self.token_refiner = HunyuanVideoIndividualTokenRefiner( num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, num_layers=num_layers, mlp_width_ratio=mlp_ratio, mlp_drop_rate=mlp_drop_rate, attention_bias=attention_bias, ) def forward( self, hidden_states: torch.Tensor, timestep: torch.LongTensor, attention_mask: Optional[torch.LongTensor] = None, ) -> torch.Tensor: if attention_mask is None: pooled_projections = hidden_states.mean(dim=1) else: original_dtype = hidden_states.dtype mask_float = attention_mask.float().unsqueeze(-1) pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1) pooled_projections = pooled_projections.to(original_dtype) temb = self.time_text_embed(timestep, pooled_projections) hidden_states = self.proj_in(hidden_states) hidden_states = self.token_refiner(hidden_states, temb, attention_mask) return hidden_states class HunyuanVideoRotaryPosEmbed(nn.Module): def __init__(self, rope_dim, theta): super().__init__() self.DT, self.DY, self.DX = rope_dim self.theta = theta @torch.no_grad() def get_frequency(self, dim, pos): T, H, W = pos.shape freqs = 1.0 / (self.theta ** (torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device)[: (dim // 2)] / dim)) freqs = torch.outer(freqs, pos.reshape(-1)).unflatten(-1, (T, H, W)).repeat_interleave(2, dim=0) return freqs.cos(), freqs.sin() @torch.no_grad() def forward_inner(self, frame_indices, height, width, device): GT, GY, GX = torch.meshgrid( frame_indices.to(device=device, dtype=torch.float32), torch.arange(0, height, device=device, dtype=torch.float32), torch.arange(0, width, device=device, dtype=torch.float32), indexing="ij" ) FCT, FST = self.get_frequency(self.DT, GT) FCY, FSY = self.get_frequency(self.DY, GY) FCX, FSX = self.get_frequency(self.DX, GX) result = torch.cat([FCT, FCY, FCX, FST, FSY, FSX], dim=0) return result.to(device) @torch.no_grad() def forward(self, frame_indices, height, width, device): frame_indices = frame_indices.unbind(0) results = [self.forward_inner(f, height, width, device) for f in frame_indices] results = torch.stack(results, dim=0) return results class AdaLayerNormZero(nn.Module): def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias) if norm_type == "layer_norm": self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) else: raise ValueError(f"unknown norm_type {norm_type}") def forward( self, x: torch.Tensor, emb: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: emb = emb.unsqueeze(-2) emb = self.linear(self.silu(emb)) shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) x = self.norm(x) * (1 + scale_msa) + shift_msa return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class AdaLayerNormZeroSingle(nn.Module): def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias) if norm_type == "layer_norm": self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) else: raise ValueError(f"unknown norm_type {norm_type}") def forward( self, x: torch.Tensor, emb: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: emb = emb.unsqueeze(-2) emb = self.linear(self.silu(emb)) shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1) x = self.norm(x) * (1 + scale_msa) + shift_msa return x, gate_msa class AdaLayerNormContinuous(nn.Module): def __init__( self, embedding_dim: int, conditioning_embedding_dim: int, elementwise_affine=True, eps=1e-5, bias=True, norm_type="layer_norm", ): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias) if norm_type == "layer_norm": self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias) else: raise ValueError(f"unknown norm_type {norm_type}") def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor: emb = emb.unsqueeze(-2) emb = self.linear(self.silu(emb)) scale, shift = emb.chunk(2, dim=-1) x = self.norm(x) * (1 + scale) + shift return x class HunyuanVideoSingleTransformerBlock(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float = 4.0, qk_norm: str = "rms_norm", ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim mlp_dim = int(hidden_size * mlp_ratio) self.attn = Attention( query_dim=hidden_size, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=hidden_size, bias=True, processor=HunyuanAttnProcessorFlashAttnSingle(), qk_norm=qk_norm, eps=1e-6, pre_only=True, ) self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm") self.proj_mlp = nn.Linear(hidden_size, mlp_dim) self.act_mlp = nn.GELU(approximate="tanh") self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, ) -> torch.Tensor: text_seq_length = encoder_hidden_states.shape[1] hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) residual = hidden_states # 1. Input normalization norm_hidden_states, gate = self.norm(hidden_states, emb=temb) mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) norm_hidden_states, norm_encoder_hidden_states = ( norm_hidden_states[:, :-text_seq_length, :], norm_hidden_states[:, -text_seq_length:, :], ) # 2. Attention attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, attention_mask=attention_mask, image_rotary_emb=image_rotary_emb, ) attn_output = torch.cat([attn_output, context_attn_output], dim=1) # 3. Modulation and residual connection hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) hidden_states = gate * self.proj_out(hidden_states) hidden_states = hidden_states + residual hidden_states, encoder_hidden_states = ( hidden_states[:, :-text_seq_length, :], hidden_states[:, -text_seq_length:, :], ) return hidden_states, encoder_hidden_states class HunyuanVideoTransformerBlock(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float, qk_norm: str = "rms_norm", ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm") self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm") self.attn = Attention( query_dim=hidden_size, cross_attention_dim=None, added_kv_proj_dim=hidden_size, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=hidden_size, context_pre_only=False, bias=True, processor=HunyuanAttnProcessorFlashAttnDouble(), qk_norm=qk_norm, eps=1e-6, ) self.norm2 = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") self.norm2_context = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: # 1. Input normalization norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(encoder_hidden_states, emb=temb) # 2. Joint attention attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, attention_mask=attention_mask, image_rotary_emb=freqs_cis, ) # 3. Modulation and residual connection hidden_states = hidden_states + attn_output * gate_msa encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa norm_hidden_states = self.norm2(hidden_states) norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp # 4. Feed-forward ff_output = self.ff(norm_hidden_states) context_ff_output = self.ff_context(norm_encoder_hidden_states) hidden_states = hidden_states + gate_mlp * ff_output encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output return hidden_states, encoder_hidden_states class ClipVisionProjection(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.up = nn.Linear(in_channels, out_channels * 3) self.down = nn.Linear(out_channels * 3, out_channels) def forward(self, x): projected_x = self.down(nn.functional.silu(self.up(x))) return projected_x class HunyuanVideoPatchEmbed(nn.Module): def __init__(self, patch_size, in_chans, embed_dim): super().__init__() self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) class HunyuanVideoPatchEmbedForCleanLatents(nn.Module): def __init__(self, inner_dim): super().__init__() self.proj = nn.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2)) self.proj_2x = nn.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4)) self.proj_4x = nn.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8)) @torch.no_grad() def initialize_weight_from_another_conv3d(self, another_layer): weight = another_layer.weight.detach().clone() bias = another_layer.bias.detach().clone() sd = { 'proj.weight': weight.clone(), 'proj.bias': bias.clone(), 'proj_2x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=2, hk=2, wk=2) / 8.0, 'proj_2x.bias': bias.clone(), 'proj_4x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=4, hk=4, wk=4) / 64.0, 'proj_4x.bias': bias.clone(), } sd = {k: v.clone() for k, v in sd.items()} self.load_state_dict(sd) return class HunyuanVideoTransformer3DModelPacked(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): @register_to_config def __init__( self, in_channels: int = 16, out_channels: int = 16, num_attention_heads: int = 24, attention_head_dim: int = 128, num_layers: int = 20, num_single_layers: int = 40, num_refiner_layers: int = 2, mlp_ratio: float = 4.0, patch_size: int = 2, patch_size_t: int = 1, qk_norm: str = "rms_norm", guidance_embeds: bool = True, text_embed_dim: int = 4096, pooled_projection_dim: int = 768, rope_theta: float = 256.0, rope_axes_dim: Tuple[int] = (16, 56, 56), has_image_proj=False, image_proj_dim=1152, has_clean_x_embedder=False, ) -> None: super().__init__() inner_dim = num_attention_heads * attention_head_dim out_channels = out_channels or in_channels # 1. Latent and condition embedders self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim) self.context_embedder = HunyuanVideoTokenRefiner( text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers ) self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim) self.clean_x_embedder = None self.image_projection = None # 2. RoPE self.rope = HunyuanVideoRotaryPosEmbed(rope_axes_dim, rope_theta) # 3. Dual stream transformer blocks self.transformer_blocks = nn.ModuleList( [ HunyuanVideoTransformerBlock( num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm ) for _ in range(num_layers) ] ) # 4. Single stream transformer blocks self.single_transformer_blocks = nn.ModuleList( [ HunyuanVideoSingleTransformerBlock( num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm ) for _ in range(num_single_layers) ] ) # 5. Output projection self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels) self.inner_dim = inner_dim self.use_gradient_checkpointing = False self.enable_teacache = False if has_image_proj: self.install_image_projection(image_proj_dim) if has_clean_x_embedder: self.install_clean_x_embedder() self.high_quality_fp32_output_for_inference = False def install_image_projection(self, in_channels): self.image_projection = ClipVisionProjection(in_channels=in_channels, out_channels=self.inner_dim) self.config['has_image_proj'] = True self.config['image_proj_dim'] = in_channels def install_clean_x_embedder(self): self.clean_x_embedder = HunyuanVideoPatchEmbedForCleanLatents(self.inner_dim) self.config['has_clean_x_embedder'] = True def enable_gradient_checkpointing(self): self.use_gradient_checkpointing = True print('self.use_gradient_checkpointing = True') def disable_gradient_checkpointing(self): self.use_gradient_checkpointing = False print('self.use_gradient_checkpointing = False') def initialize_teacache(self, enable_teacache=True, num_steps=25, rel_l1_thresh=0.15): self.enable_teacache = enable_teacache self.cnt = 0 self.num_steps = num_steps self.rel_l1_thresh = rel_l1_thresh # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup self.accumulated_rel_l1_distance = 0 self.previous_modulated_input = None self.previous_residual = None self.teacache_rescale_func = np.poly1d([7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02]) def gradient_checkpointing_method(self, block, *args): if self.use_gradient_checkpointing: result = torch.utils.checkpoint.checkpoint(block, *args, use_reentrant=False) else: result = block(*args) return result def process_input_hidden_states( self, latents, latent_indices=None, clean_latents=None, clean_latent_indices=None, clean_latents_2x=None, clean_latent_2x_indices=None, clean_latents_4x=None, clean_latent_4x_indices=None ): hidden_states = self.gradient_checkpointing_method(self.x_embedder.proj, latents) B, C, T, H, W = hidden_states.shape if latent_indices is None: latent_indices = torch.arange(0, T).unsqueeze(0).expand(B, -1) hidden_states = hidden_states.flatten(2).transpose(1, 2) rope_freqs = self.rope(frame_indices=latent_indices, height=H, width=W, device=hidden_states.device) rope_freqs = rope_freqs.flatten(2).transpose(1, 2) if clean_latents is not None and clean_latent_indices is not None: clean_latents = clean_latents.to(hidden_states) clean_latents = self.gradient_checkpointing_method(self.clean_x_embedder.proj, clean_latents) clean_latents = clean_latents.flatten(2).transpose(1, 2) clean_latent_rope_freqs = self.rope(frame_indices=clean_latent_indices, height=H, width=W, device=clean_latents.device) clean_latent_rope_freqs = clean_latent_rope_freqs.flatten(2).transpose(1, 2) hidden_states = torch.cat([clean_latents, hidden_states], dim=1) rope_freqs = torch.cat([clean_latent_rope_freqs, rope_freqs], dim=1) if clean_latents_2x is not None and clean_latent_2x_indices is not None: clean_latents_2x = clean_latents_2x.to(hidden_states) clean_latents_2x = pad_for_3d_conv(clean_latents_2x, (2, 4, 4)) clean_latents_2x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_2x, clean_latents_2x) clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2) clean_latent_2x_rope_freqs = self.rope(frame_indices=clean_latent_2x_indices, height=H, width=W, device=clean_latents_2x.device) clean_latent_2x_rope_freqs = pad_for_3d_conv(clean_latent_2x_rope_freqs, (2, 2, 2)) clean_latent_2x_rope_freqs = center_down_sample_3d(clean_latent_2x_rope_freqs, (2, 2, 2)) clean_latent_2x_rope_freqs = clean_latent_2x_rope_freqs.flatten(2).transpose(1, 2) hidden_states = torch.cat([clean_latents_2x, hidden_states], dim=1) rope_freqs = torch.cat([clean_latent_2x_rope_freqs, rope_freqs], dim=1) if clean_latents_4x is not None and clean_latent_4x_indices is not None: clean_latents_4x = clean_latents_4x.to(hidden_states) clean_latents_4x = pad_for_3d_conv(clean_latents_4x, (4, 8, 8)) clean_latents_4x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_4x, clean_latents_4x) clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2) clean_latent_4x_rope_freqs = self.rope(frame_indices=clean_latent_4x_indices, height=H, width=W, device=clean_latents_4x.device) clean_latent_4x_rope_freqs = pad_for_3d_conv(clean_latent_4x_rope_freqs, (4, 4, 4)) clean_latent_4x_rope_freqs = center_down_sample_3d(clean_latent_4x_rope_freqs, (4, 4, 4)) clean_latent_4x_rope_freqs = clean_latent_4x_rope_freqs.flatten(2).transpose(1, 2) hidden_states = torch.cat([clean_latents_4x, hidden_states], dim=1) rope_freqs = torch.cat([clean_latent_4x_rope_freqs, rope_freqs], dim=1) return hidden_states, rope_freqs def forward( self, hidden_states, timestep, encoder_hidden_states, encoder_attention_mask, pooled_projections, guidance, latent_indices=None, clean_latents=None, clean_latent_indices=None, clean_latents_2x=None, clean_latent_2x_indices=None, clean_latents_4x=None, clean_latent_4x_indices=None, image_embeddings=None, attention_kwargs=None, return_dict=True ): if attention_kwargs is None: attention_kwargs = {} batch_size, num_channels, num_frames, height, width = hidden_states.shape p, p_t = self.config['patch_size'], self.config['patch_size_t'] post_patch_num_frames = num_frames // p_t post_patch_height = height // p post_patch_width = width // p original_context_length = post_patch_num_frames * post_patch_height * post_patch_width hidden_states, rope_freqs = self.process_input_hidden_states(hidden_states, latent_indices, clean_latents, clean_latent_indices, clean_latents_2x, clean_latent_2x_indices, clean_latents_4x, clean_latent_4x_indices) temb = self.gradient_checkpointing_method(self.time_text_embed, timestep, guidance, pooled_projections) encoder_hidden_states = self.gradient_checkpointing_method(self.context_embedder, encoder_hidden_states, timestep, encoder_attention_mask) if self.image_projection is not None: assert image_embeddings is not None, 'You must use image embeddings!' extra_encoder_hidden_states = self.gradient_checkpointing_method(self.image_projection, image_embeddings) extra_attention_mask = torch.ones((batch_size, extra_encoder_hidden_states.shape[1]), dtype=encoder_attention_mask.dtype, device=encoder_attention_mask.device) # must cat before (not after) encoder_hidden_states, due to attn masking encoder_hidden_states = torch.cat([extra_encoder_hidden_states, encoder_hidden_states], dim=1) encoder_attention_mask = torch.cat([extra_attention_mask, encoder_attention_mask], dim=1) with torch.no_grad(): if batch_size == 1: # When batch size is 1, we do not need any masks or var-len funcs since cropping is mathematically same to what we want # If they are not same, then their impls are wrong. Ours are always the correct one. text_len = encoder_attention_mask.sum().item() encoder_hidden_states = encoder_hidden_states[:, :text_len] attention_mask = None, None, None, None else: img_seq_len = hidden_states.shape[1] txt_seq_len = encoder_hidden_states.shape[1] cu_seqlens_q = get_cu_seqlens(encoder_attention_mask, img_seq_len) cu_seqlens_kv = cu_seqlens_q max_seqlen_q = img_seq_len + txt_seq_len max_seqlen_kv = max_seqlen_q attention_mask = cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv if self.enable_teacache: modulated_inp = self.transformer_blocks[0].norm1(hidden_states, emb=temb)[0] if self.cnt == 0 or self.cnt == self.num_steps-1: should_calc = True self.accumulated_rel_l1_distance = 0 else: curr_rel_l1 = ((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item() self.accumulated_rel_l1_distance += self.teacache_rescale_func(curr_rel_l1) should_calc = self.accumulated_rel_l1_distance >= self.rel_l1_thresh if should_calc: self.accumulated_rel_l1_distance = 0 self.previous_modulated_input = modulated_inp self.cnt += 1 if self.cnt == self.num_steps: self.cnt = 0 if not should_calc: hidden_states = hidden_states + self.previous_residual else: ori_hidden_states = hidden_states.clone() for block_id, block in enumerate(self.transformer_blocks): hidden_states, encoder_hidden_states = self.gradient_checkpointing_method( block, hidden_states, encoder_hidden_states, temb, attention_mask, rope_freqs ) for block_id, block in enumerate(self.single_transformer_blocks): hidden_states, encoder_hidden_states = self.gradient_checkpointing_method( block, hidden_states, encoder_hidden_states, temb, attention_mask, rope_freqs ) self.previous_residual = hidden_states - ori_hidden_states else: for block_id, block in enumerate(self.transformer_blocks): hidden_states, encoder_hidden_states = self.gradient_checkpointing_method( block, hidden_states, encoder_hidden_states, temb, attention_mask, rope_freqs ) for block_id, block in enumerate(self.single_transformer_blocks): hidden_states, encoder_hidden_states = self.gradient_checkpointing_method( block, hidden_states, encoder_hidden_states, temb, attention_mask, rope_freqs ) hidden_states = self.gradient_checkpointing_method(self.norm_out, hidden_states, temb) hidden_states = hidden_states[:, -original_context_length:, :] if self.high_quality_fp32_output_for_inference: hidden_states = hidden_states.to(dtype=torch.float32) if self.proj_out.weight.dtype != torch.float32: self.proj_out.to(dtype=torch.float32) hidden_states = self.gradient_checkpointing_method(self.proj_out, hidden_states) hidden_states = einops.rearrange(hidden_states, 'b (t h w) (c pt ph pw) -> b c (t pt) (h ph) (w pw)', t=post_patch_num_frames, h=post_patch_height, w=post_patch_width, pt=p_t, ph=p, pw=p) if return_dict: return Transformer2DModelOutput(sample=hidden_states) return hidden_states, ``` ## /diffusers_helper/pipelines/k_diffusion_hunyuan.py ```py path="/diffusers_helper/pipelines/k_diffusion_hunyuan.py" import torch import math from diffusers_helper.k_diffusion.uni_pc_fm import sample_unipc from diffusers_helper.k_diffusion.wrapper import fm_wrapper from diffusers_helper.utils import repeat_to_batch_size def flux_time_shift(t, mu=1.15, sigma=1.0): return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) def calculate_flux_mu(context_length, x1=256, y1=0.5, x2=4096, y2=1.15, exp_max=7.0): k = (y2 - y1) / (x2 - x1) b = y1 - k * x1 mu = k * context_length + b mu = min(mu, math.log(exp_max)) return mu def get_flux_sigmas_from_mu(n, mu): sigmas = torch.linspace(1, 0, steps=n + 1) sigmas = flux_time_shift(sigmas, mu=mu) return sigmas @torch.inference_mode() def sample_hunyuan( transformer, sampler='unipc', initial_latent=None, concat_latent=None, strength=1.0, width=512, height=512, frames=16, real_guidance_scale=1.0, distilled_guidance_scale=6.0, guidance_rescale=0.0, shift=None, num_inference_steps=25, batch_size=None, generator=None, prompt_embeds=None, prompt_embeds_mask=None, prompt_poolers=None, negative_prompt_embeds=None, negative_prompt_embeds_mask=None, negative_prompt_poolers=None, dtype=torch.bfloat16, device=None, negative_kwargs=None, callback=None, **kwargs, ): device = device or transformer.device if batch_size is None: batch_size = int(prompt_embeds.shape[0]) latents = torch.randn((batch_size, 16, (frames + 3) // 4, height // 8, width // 8), generator=generator, device=generator.device).to(device=device, dtype=torch.float32) B, C, T, H, W = latents.shape seq_length = T * H * W // 4 if shift is None: mu = calculate_flux_mu(seq_length, exp_max=7.0) else: mu = math.log(shift) sigmas = get_flux_sigmas_from_mu(num_inference_steps, mu).to(device) k_model = fm_wrapper(transformer) if initial_latent is not None: sigmas = sigmas * strength first_sigma = sigmas[0].to(device=device, dtype=torch.float32) initial_latent = initial_latent.to(device=device, dtype=torch.float32) latents = initial_latent.float() * (1.0 - first_sigma) + latents.float() * first_sigma if concat_latent is not None: concat_latent = concat_latent.to(latents) distilled_guidance = torch.tensor([distilled_guidance_scale * 1000.0] * batch_size).to(device=device, dtype=dtype) prompt_embeds = repeat_to_batch_size(prompt_embeds, batch_size) prompt_embeds_mask = repeat_to_batch_size(prompt_embeds_mask, batch_size) prompt_poolers = repeat_to_batch_size(prompt_poolers, batch_size) negative_prompt_embeds = repeat_to_batch_size(negative_prompt_embeds, batch_size) negative_prompt_embeds_mask = repeat_to_batch_size(negative_prompt_embeds_mask, batch_size) negative_prompt_poolers = repeat_to_batch_size(negative_prompt_poolers, batch_size) concat_latent = repeat_to_batch_size(concat_latent, batch_size) sampler_kwargs = dict( dtype=dtype, cfg_scale=real_guidance_scale, cfg_rescale=guidance_rescale, concat_latent=concat_latent, positive=dict( pooled_projections=prompt_poolers, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_embeds_mask, guidance=distilled_guidance, **kwargs, ), negative=dict( pooled_projections=negative_prompt_poolers, encoder_hidden_states=negative_prompt_embeds, encoder_attention_mask=negative_prompt_embeds_mask, guidance=distilled_guidance, **(kwargs if negative_kwargs is None else {**kwargs, **negative_kwargs}), ) ) if sampler == 'unipc': results = sample_unipc(k_model, latents, sigmas, extra_args=sampler_kwargs, disable=False, callback=callback) else: raise NotImplementedError(f'Sampler {sampler} is not supported.') return results ``` ## /diffusers_helper/thread_utils.py ```py path="/diffusers_helper/thread_utils.py" import time from threading import Thread, Lock class Listener: task_queue = [] lock = Lock() thread = None @classmethod def _process_tasks(cls): while True: task = None with cls.lock: if cls.task_queue: task = cls.task_queue.pop(0) if task is None: time.sleep(0.001) continue func, args, kwargs = task try: func(*args, **kwargs) except Exception as e: print(f"Error in listener thread: {e}") @classmethod def add_task(cls, func, *args, **kwargs): with cls.lock: cls.task_queue.append((func, args, kwargs)) if cls.thread is None: cls.thread = Thread(target=cls._process_tasks, daemon=True) cls.thread.start() def async_run(func, *args, **kwargs): Listener.add_task(func, *args, **kwargs) class FIFOQueue: def __init__(self): self.queue = [] self.lock = Lock() def push(self, item): with self.lock: self.queue.append(item) def pop(self): with self.lock: if self.queue: return self.queue.pop(0) return None def top(self): with self.lock: if self.queue: return self.queue[0] return None def next(self): while True: with self.lock: if self.queue: return self.queue.pop(0) time.sleep(0.001) class AsyncStream: def __init__(self): self.input_queue = FIFOQueue() self.output_queue = FIFOQueue() ``` ## /diffusers_helper/utils.py ```py path="/diffusers_helper/utils.py" import os import cv2 import json import random import glob import torch import einops import numpy as np import datetime import torchvision import safetensors.torch as sf from PIL import Image def min_resize(x, m): if x.shape[0] < x.shape[1]: s0 = m s1 = int(float(m) / float(x.shape[0]) * float(x.shape[1])) else: s0 = int(float(m) / float(x.shape[1]) * float(x.shape[0])) s1 = m new_max = max(s1, s0) raw_max = max(x.shape[0], x.shape[1]) if new_max < raw_max: interpolation = cv2.INTER_AREA else: interpolation = cv2.INTER_LANCZOS4 y = cv2.resize(x, (s1, s0), interpolation=interpolation) return y def d_resize(x, y): H, W, C = y.shape new_min = min(H, W) raw_min = min(x.shape[0], x.shape[1]) if new_min < raw_min: interpolation = cv2.INTER_AREA else: interpolation = cv2.INTER_LANCZOS4 y = cv2.resize(x, (W, H), interpolation=interpolation) return y def resize_and_center_crop(image, target_width, target_height): if target_height == image.shape[0] and target_width == image.shape[1]: return image pil_image = Image.fromarray(image) original_width, original_height = pil_image.size scale_factor = max(target_width / original_width, target_height / original_height) resized_width = int(round(original_width * scale_factor)) resized_height = int(round(original_height * scale_factor)) resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS) left = (resized_width - target_width) / 2 top = (resized_height - target_height) / 2 right = (resized_width + target_width) / 2 bottom = (resized_height + target_height) / 2 cropped_image = resized_image.crop((left, top, right, bottom)) return np.array(cropped_image) def resize_and_center_crop_pytorch(image, target_width, target_height): B, C, H, W = image.shape if H == target_height and W == target_width: return image scale_factor = max(target_width / W, target_height / H) resized_width = int(round(W * scale_factor)) resized_height = int(round(H * scale_factor)) resized = torch.nn.functional.interpolate(image, size=(resized_height, resized_width), mode='bilinear', align_corners=False) top = (resized_height - target_height) // 2 left = (resized_width - target_width) // 2 cropped = resized[:, :, top:top + target_height, left:left + target_width] return cropped def resize_without_crop(image, target_width, target_height): if target_height == image.shape[0] and target_width == image.shape[1]: return image pil_image = Image.fromarray(image) resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS) return np.array(resized_image) def just_crop(image, w, h): if h == image.shape[0] and w == image.shape[1]: return image original_height, original_width = image.shape[:2] k = min(original_height / h, original_width / w) new_width = int(round(w * k)) new_height = int(round(h * k)) x_start = (original_width - new_width) // 2 y_start = (original_height - new_height) // 2 cropped_image = image[y_start:y_start + new_height, x_start:x_start + new_width] return cropped_image def write_to_json(data, file_path): temp_file_path = file_path + ".tmp" with open(temp_file_path, 'wt', encoding='utf-8') as temp_file: json.dump(data, temp_file, indent=4) os.replace(temp_file_path, file_path) return def read_from_json(file_path): with open(file_path, 'rt', encoding='utf-8') as file: data = json.load(file) return data def get_active_parameters(m): return {k: v for k, v in m.named_parameters() if v.requires_grad} def cast_training_params(m, dtype=torch.float32): result = {} for n, param in m.named_parameters(): if param.requires_grad: param.data = param.to(dtype) result[n] = param return result def separate_lora_AB(parameters, B_patterns=None): parameters_normal = {} parameters_B = {} if B_patterns is None: B_patterns = ['.lora_B.', '__zero__'] for k, v in parameters.items(): if any(B_pattern in k for B_pattern in B_patterns): parameters_B[k] = v else: parameters_normal[k] = v return parameters_normal, parameters_B def set_attr_recursive(obj, attr, value): attrs = attr.split(".") for name in attrs[:-1]: obj = getattr(obj, name) setattr(obj, attrs[-1], value) return def print_tensor_list_size(tensors): total_size = 0 total_elements = 0 if isinstance(tensors, dict): tensors = tensors.values() for tensor in tensors: total_size += tensor.nelement() * tensor.element_size() total_elements += tensor.nelement() total_size_MB = total_size / (1024 ** 2) total_elements_B = total_elements / 1e9 print(f"Total number of tensors: {len(tensors)}") print(f"Total size of tensors: {total_size_MB:.2f} MB") print(f"Total number of parameters: {total_elements_B:.3f} billion") return @torch.no_grad() def batch_mixture(a, b=None, probability_a=0.5, mask_a=None): batch_size = a.size(0) if b is None: b = torch.zeros_like(a) if mask_a is None: mask_a = torch.rand(batch_size) < probability_a mask_a = mask_a.to(a.device) mask_a = mask_a.reshape((batch_size,) + (1,) * (a.dim() - 1)) result = torch.where(mask_a, a, b) return result @torch.no_grad() def zero_module(module): for p in module.parameters(): p.detach().zero_() return module @torch.no_grad() def supress_lower_channels(m, k, alpha=0.01): data = m.weight.data.clone() assert int(data.shape[1]) >= k data[:, :k] = data[:, :k] * alpha m.weight.data = data.contiguous().clone() return m def freeze_module(m): if not hasattr(m, '_forward_inside_frozen_module'): m._forward_inside_frozen_module = m.forward m.requires_grad_(False) m.forward = torch.no_grad()(m.forward) return m def get_latest_safetensors(folder_path): safetensors_files = glob.glob(os.path.join(folder_path, '*.safetensors')) if not safetensors_files: raise ValueError('No file to resume!') latest_file = max(safetensors_files, key=os.path.getmtime) latest_file = os.path.abspath(os.path.realpath(latest_file)) return latest_file def generate_random_prompt_from_tags(tags_str, min_length=3, max_length=32): tags = tags_str.split(', ') tags = random.sample(tags, k=min(random.randint(min_length, max_length), len(tags))) prompt = ', '.join(tags) return prompt def interpolate_numbers(a, b, n, round_to_int=False, gamma=1.0): numbers = a + (b - a) * (np.linspace(0, 1, n) ** gamma) if round_to_int: numbers = np.round(numbers).astype(int) return numbers.tolist() def uniform_random_by_intervals(inclusive, exclusive, n, round_to_int=False): edges = np.linspace(0, 1, n + 1) points = np.random.uniform(edges[:-1], edges[1:]) numbers = inclusive + (exclusive - inclusive) * points if round_to_int: numbers = np.round(numbers).astype(int) return numbers.tolist() def soft_append_bcthw(history, current, overlap=0): if overlap <= 0: return torch.cat([history, current], dim=2) assert history.shape[2] >= overlap, f"History length ({history.shape[2]}) must be >= overlap ({overlap})" assert current.shape[2] >= overlap, f"Current length ({current.shape[2]}) must be >= overlap ({overlap})" weights = torch.linspace(1, 0, overlap, dtype=history.dtype, device=history.device).view(1, 1, -1, 1, 1) blended = weights * history[:, :, -overlap:] + (1 - weights) * current[:, :, :overlap] output = torch.cat([history[:, :, :-overlap], blended, current[:, :, overlap:]], dim=2) return output.to(history) def save_bcthw_as_mp4(x, output_filename, fps=10, crf=0): b, c, t, h, w = x.shape per_row = b for p in [6, 5, 4, 3, 2]: if b % p == 0: per_row = p break os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True) x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5 x = x.detach().cpu().to(torch.uint8) x = einops.rearrange(x, '(m n) c t h w -> t (m h) (n w) c', n=per_row) torchvision.io.write_video(output_filename, x, fps=fps, video_codec='libx264', options={'crf': str(int(crf))}) return x def save_bcthw_as_png(x, output_filename): os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True) x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5 x = x.detach().cpu().to(torch.uint8) x = einops.rearrange(x, 'b c t h w -> c (b h) (t w)') torchvision.io.write_png(x, output_filename) return output_filename def save_bchw_as_png(x, output_filename): os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True) x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5 x = x.detach().cpu().to(torch.uint8) x = einops.rearrange(x, 'b c h w -> c h (b w)') torchvision.io.write_png(x, output_filename) return output_filename def add_tensors_with_padding(tensor1, tensor2): if tensor1.shape == tensor2.shape: return tensor1 + tensor2 shape1 = tensor1.shape shape2 = tensor2.shape new_shape = tuple(max(s1, s2) for s1, s2 in zip(shape1, shape2)) padded_tensor1 = torch.zeros(new_shape) padded_tensor2 = torch.zeros(new_shape) padded_tensor1[tuple(slice(0, s) for s in shape1)] = tensor1 padded_tensor2[tuple(slice(0, s) for s in shape2)] = tensor2 result = padded_tensor1 + padded_tensor2 return result def print_free_mem(): torch.cuda.empty_cache() free_mem, total_mem = torch.cuda.mem_get_info(0) free_mem_mb = free_mem / (1024 ** 2) total_mem_mb = total_mem / (1024 ** 2) print(f"Free memory: {free_mem_mb:.2f} MB") print(f"Total memory: {total_mem_mb:.2f} MB") return def print_gpu_parameters(device, state_dict, log_count=1): summary = {"device": device, "keys_count": len(state_dict)} logged_params = {} for i, (key, tensor) in enumerate(state_dict.items()): if i >= log_count: break logged_params[key] = tensor.flatten()[:3].tolist() summary["params"] = logged_params print(str(summary)) return def visualize_txt_as_img(width, height, text, font_path='font/DejaVuSans.ttf', size=18): from PIL import Image, ImageDraw, ImageFont txt = Image.new("RGB", (width, height), color="white") draw = ImageDraw.Draw(txt) font = ImageFont.truetype(font_path, size=size) if text == '': return np.array(txt) # Split text into lines that fit within the image width lines = [] words = text.split() current_line = words[0] for word in words[1:]: line_with_word = f"{current_line} {word}" if draw.textbbox((0, 0), line_with_word, font=font)[2] <= width: current_line = line_with_word else: lines.append(current_line) current_line = word lines.append(current_line) # Draw the text line by line y = 0 line_height = draw.textbbox((0, 0), "A", font=font)[3] for line in lines: if y + line_height > height: break # stop drawing if the next line will be outside the image draw.text((0, y), line, fill="black", font=font) y += line_height return np.array(txt) def blue_mark(x): x = x.copy() c = x[:, :, 2] b = cv2.blur(c, (9, 9)) x[:, :, 2] = ((c - b) * 16.0 + b).clip(-1, 1) return x def green_mark(x): x = x.copy() x[:, :, 2] = -1 x[:, :, 0] = -1 return x def frame_mark(x): x = x.copy() x[:64] = -1 x[-64:] = -1 x[:, :8] = 1 x[:, -8:] = 1 return x @torch.inference_mode() def pytorch2numpy(imgs): results = [] for x in imgs: y = x.movedim(0, -1) y = y * 127.5 + 127.5 y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8) results.append(y) return results @torch.inference_mode() def numpy2pytorch(imgs): h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0 h = h.movedim(-1, 1) return h @torch.no_grad() def duplicate_prefix_to_suffix(x, count, zero_out=False): if zero_out: return torch.cat([x, torch.zeros_like(x[:count])], dim=0) else: return torch.cat([x, x[:count]], dim=0) def weighted_mse(a, b, weight): return torch.mean(weight.float() * (a.float() - b.float()) ** 2) def clamped_linear_interpolation(x, x_min, y_min, x_max, y_max, sigma=1.0): x = (x - x_min) / (x_max - x_min) x = max(0.0, min(x, 1.0)) x = x ** sigma return y_min + x * (y_max - y_min) def expand_to_dims(x, target_dims): return x.view(*x.shape, *([1] * max(0, target_dims - x.dim()))) def repeat_to_batch_size(tensor: torch.Tensor, batch_size: int): if tensor is None: return None first_dim = tensor.shape[0] if first_dim == batch_size: return tensor if batch_size % first_dim != 0: raise ValueError(f"Cannot evenly repeat first dim {first_dim} to match batch_size {batch_size}.") repeat_times = batch_size // first_dim return tensor.repeat(repeat_times, *[1] * (tensor.dim() - 1)) def dim5(x): return expand_to_dims(x, 5) def dim4(x): return expand_to_dims(x, 4) def dim3(x): return expand_to_dims(x, 3) def crop_or_pad_yield_mask(x, length): B, F, C = x.shape device = x.device dtype = x.dtype if F < length: y = torch.zeros((B, length, C), dtype=dtype, device=device) mask = torch.zeros((B, length), dtype=torch.bool, device=device) y[:, :F, :] = x mask[:, :F] = True return y, mask return x[:, :length, :], torch.ones((B, length), dtype=torch.bool, device=device) def extend_dim(x, dim, minimal_length, zero_pad=False): original_length = int(x.shape[dim]) if original_length >= minimal_length: return x if zero_pad: padding_shape = list(x.shape) padding_shape[dim] = minimal_length - original_length padding = torch.zeros(padding_shape, dtype=x.dtype, device=x.device) else: idx = (slice(None),) * dim + (slice(-1, None),) + (slice(None),) * (len(x.shape) - dim - 1) last_element = x[idx] padding = last_element.repeat_interleave(minimal_length - original_length, dim=dim) return torch.cat([x, padding], dim=dim) def lazy_positional_encoding(t, repeats=None): if not isinstance(t, list): t = [t] from diffusers.models.embeddings import get_timestep_embedding te = torch.tensor(t) te = get_timestep_embedding(timesteps=te, embedding_dim=256, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=1.0) if repeats is None: return te te = te[:, None, :].expand(-1, repeats, -1) return te def state_dict_offset_merge(A, B, C=None): result = {} keys = A.keys() for key in keys: A_value = A[key] B_value = B[key].to(A_value) if C is None: result[key] = A_value + B_value else: C_value = C[key].to(A_value) result[key] = A_value + B_value - C_value return result def state_dict_weighted_merge(state_dicts, weights): if len(state_dicts) != len(weights): raise ValueError("Number of state dictionaries must match number of weights") if not state_dicts: return {} total_weight = sum(weights) if total_weight == 0: raise ValueError("Sum of weights cannot be zero") normalized_weights = [w / total_weight for w in weights] keys = state_dicts[0].keys() result = {} for key in keys: result[key] = state_dicts[0][key] * normalized_weights[0] for i in range(1, len(state_dicts)): state_dict_value = state_dicts[i][key].to(result[key]) result[key] += state_dict_value * normalized_weights[i] return result def group_files_by_folder(all_files): grouped_files = {} for file in all_files: folder_name = os.path.basename(os.path.dirname(file)) if folder_name not in grouped_files: grouped_files[folder_name] = [] grouped_files[folder_name].append(file) list_of_lists = list(grouped_files.values()) return list_of_lists def generate_timestamp(): now = datetime.datetime.now() timestamp = now.strftime('%y%m%d_%H%M%S') milliseconds = f"{int(now.microsecond / 1000):03d}" random_number = random.randint(0, 9999) return f"{timestamp}_{milliseconds}_{random_number}" def write_PIL_image_with_png_info(image, metadata, path): from PIL.PngImagePlugin import PngInfo png_info = PngInfo() for key, value in metadata.items(): png_info.add_text(key, value) image.save(path, "PNG", pnginfo=png_info) return image def torch_safe_save(content, path): torch.save(content, path + '_tmp') os.replace(path + '_tmp', path) return path def move_optimizer_to_device(optimizer, device): for state in optimizer.state.values(): for k, v in state.items(): if isinstance(v, torch.Tensor): state[k] = v.to(device) ``` ## /requirements.txt accelerate==1.6.0 diffusers==0.33.1 transformers==4.46.2 gradio==5.23.0 sentencepiece==0.2.0 pillow==11.1.0 av==12.1.0 numpy==1.26.2 scipy==1.12.0 requests==2.31.0 torchsde==0.2.6 einops opencv-contrib-python safetensors The better and more specific the context, the better the LLM can follow instructions. If the context seems verbose, the user can refine the filter using uithub. Thank you for using https://uithub.com - Perfect LLM context for any GitHub repo.